Observation of a unique wear morphology of cBN inserts during machining of titanium metal matrix composites (Ti-MMCs); leading to new insights into their machinability

Observation of a unique wear morphology of cBN inserts during machining of titanium metal matrix... Titanium-based metal matrix composite (T-MMC) is a relatively new material with increasing demand in different industries particularly in aerospace. Yet, there is a significant lack of knowledge regarding its machinability. Tool wear mechanisms of cBN inserts during turning of TiMMCs including adhesion, abrasion, chemical interactions, and their effects on the wear surface morphology were investigated. A unique wear morphology was observed on both rake and flank surfaces, consisting of different distinct zones. The mechanisms leading to this morphology were discussed for the first time, which has led to new understandings and insights into the machinability of Ti-MMCs and more generally into machinability of titanium-based materials. High-magnification imaging revealed a discontinuity within the adhered material to the tool that appeared as a black zone surrounding the contact area. The brittle fracture in this black zone suggested embrittlement of the adhered material in this region. Further investigation confirmed that a very small amount of magnesium in the workpiece material, which is an impurity left over from the production of the titanium alloy, has a key role in this regard. Thus, it could have a profound effect on the machinability of this class of material. Furthermore, magnesium oxidation was found as the main root cause of fire hazard which is known as one of the main issues associated with machining of titanium-based alloys. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Observation of a unique wear morphology of cBN inserts during machining of titanium metal matrix composites (Ti-MMCs); leading to new insights into their machinability

Loading next page...
 
/lp/springer_journal/observation-of-a-unique-wear-morphology-of-cbn-inserts-during-hnVYsVyJ0u
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0146-z
Publisher site
See Article on Publisher Site

Abstract

Titanium-based metal matrix composite (T-MMC) is a relatively new material with increasing demand in different industries particularly in aerospace. Yet, there is a significant lack of knowledge regarding its machinability. Tool wear mechanisms of cBN inserts during turning of TiMMCs including adhesion, abrasion, chemical interactions, and their effects on the wear surface morphology were investigated. A unique wear morphology was observed on both rake and flank surfaces, consisting of different distinct zones. The mechanisms leading to this morphology were discussed for the first time, which has led to new understandings and insights into the machinability of Ti-MMCs and more generally into machinability of titanium-based materials. High-magnification imaging revealed a discontinuity within the adhered material to the tool that appeared as a black zone surrounding the contact area. The brittle fracture in this black zone suggested embrittlement of the adhered material in this region. Further investigation confirmed that a very small amount of magnesium in the workpiece material, which is an impurity left over from the production of the titanium alloy, has a key role in this regard. Thus, it could have a profound effect on the machinability of this class of material. Furthermore, magnesium oxidation was found as the main root cause of fire hazard which is known as one of the main issues associated with machining of titanium-based alloys.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Feb 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off