Observability of Complex Systems: Finding the Gap

Observability of Complex Systems: Finding the Gap For a reconstruction of state and parameter values in a dynamic system model, first the question whether these values can be uniquely determined from the data must be answered. This structural model property is known as observability or, in case of parameter calibration only, identifiability. Testing a given model for observability is a well studied problem in the systems and control sciences. However, it is increasingly difficult, if not impossible, to address this property for large size models that, nowadays, are frequently used. We demonstrate the application of a recently developed algorithm that overcomes this problem and is remarkably efficient. As an illustration we show how an observability analysis for a Chinese Hamster Ovary Cell model (34 states, 117 parameters), a JAKSTAT signalling model (31 states, 51 parameters), and a MAP Kinase model (100 states, 88 parameters) can be established in a very short time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Observability of Complex Systems: Finding the Gap

Loading next page...
 
/lp/springer_journal/observability-of-complex-systems-finding-the-gap-ns5CLsiIn0
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16682-x
Publisher site
See Article on Publisher Site

Abstract

For a reconstruction of state and parameter values in a dynamic system model, first the question whether these values can be uniquely determined from the data must be answered. This structural model property is known as observability or, in case of parameter calibration only, identifiability. Testing a given model for observability is a well studied problem in the systems and control sciences. However, it is increasingly difficult, if not impossible, to address this property for large size models that, nowadays, are frequently used. We demonstrate the application of a recently developed algorithm that overcomes this problem and is remarkably efficient. As an illustration we show how an observability analysis for a Chinese Hamster Ovary Cell model (34 states, 117 parameters), a JAKSTAT signalling model (31 states, 51 parameters), and a MAP Kinase model (100 states, 88 parameters) can be established in a very short time.

Journal

Scientific ReportsSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off