Numerous small rearrangements of gene content, order and orientation differentiate grass genomes

Numerous small rearrangements of gene content, order and orientation differentiate grass genomes Comparative genetic mapping has indicated that the grass family (Poaceae) exhibits extensive chromosomal collinearity. In order to investigate microcollinearity in these genomes, several laboratories have begun to undertake comparative DNA sequence analyses of orthologous chromosome segments from various grass species. Five different regions have now been investigated in detail, with four regions sequenced for maize, rice and sorghum, plus two for wheat and one for barley. In all five of these segments, gene rearrangements were observed in at least one of the comparisons. Most of the detected rearrangements are small, involving the inversion, duplication, translocation or deletion of DNA segments that contain only 1-3 genes. Even closely related species, like barley and wheat or maize and sorghum, exhibit approximately 20% alterations in gene content or orientation. These results indicate that thousands of small genetic rearrangements have occurred in several grass lineages since their divergence from common ancestors. These rearrangements have largely been missed by genetic mapping and will both complicate and enrich the use of comparative genetics in the grasses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Numerous small rearrangements of gene content, order and orientation differentiate grass genomes

Loading next page...
 
/lp/springer_journal/numerous-small-rearrangements-of-gene-content-order-and-orientation-zo0vLDrjFM
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1014841515249
Publisher site
See Article on Publisher Site

Abstract

Comparative genetic mapping has indicated that the grass family (Poaceae) exhibits extensive chromosomal collinearity. In order to investigate microcollinearity in these genomes, several laboratories have begun to undertake comparative DNA sequence analyses of orthologous chromosome segments from various grass species. Five different regions have now been investigated in detail, with four regions sequenced for maize, rice and sorghum, plus two for wheat and one for barley. In all five of these segments, gene rearrangements were observed in at least one of the comparisons. Most of the detected rearrangements are small, involving the inversion, duplication, translocation or deletion of DNA segments that contain only 1-3 genes. Even closely related species, like barley and wheat or maize and sorghum, exhibit approximately 20% alterations in gene content or orientation. These results indicate that thousands of small genetic rearrangements have occurred in several grass lineages since their divergence from common ancestors. These rearrangements have largely been missed by genetic mapping and will both complicate and enrich the use of comparative genetics in the grasses.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off