Numerical visualization and optimization on the core penetration in multi-cavity co-injection molding with a bifurcation runner structure

Numerical visualization and optimization on the core penetration in multi-cavity co-injection... Co-injection molding and multi-cavity molding are common processes for plastic products manufacturing. These two systems are sometimes combined and applied in the manufacture of bifurcation-structure products. However, how the influential factors truly affect the core penetration behavior and the detailed mechanism of core penetration behavior has not yet been fully understood. In this study, it has focused on studying the multi-cavity co-injection system with a bifurcation runner structure. The results showed that when the skin-to-core ratio is fixed (say 72/28), the melt flow behavior of a co-injection system, utilizing the same material for both skin and core, is very similar to that of a single shot injection molding. Specifically, the non-symmetrical bifurcation runner structure will influence the flow behavior greatly and cause the core distribution imbalance between different cavities. However, it is observed that when the flow rate is increased, the core material will occupy more volume space in the upstream portion of the runner and the core penetration distance will be reduced in the flow direction downstream. This feature is very useful to further manipulate the skin/core interface in a multi-cavity system. Moreover, regarding how to improve a poor inter-cavity balance of core material distribution, using a suitable adjustment of the skin-to-core ratio will be greatly helpful. However, the core break-through defect can be a common problem in co-injection molding when an unsuitable skin-to-core ratio is used. To prevent the core break-through defect, increasing the flow rate properly can be one of the good options that we can use. Hence, it is concluded that a suitable adjustment of the skin-to-core ratio and a proper flow rate control can be used to optimize the core material distribution in multi-cavity co-injection molding with a bifurcation runner structure. Lastly, in order to validate the inference and the effectiveness of this proposal to improve the inter-cavity imbalance and core break-through problem, a series of experimental studies were performed. And, all experimental results are in good agreement with those of our numerical predictions to further validate the feasibility of our proposed method to gain a better control of the core material distribution with a bifurcation runner structure in multi-cavity co-injection molding. The International Journal of Advanced Manufacturing Technology Springer Journals

Numerical visualization and optimization on the core penetration in multi-cavity co-injection molding with a bifurcation runner structure

Loading next page...
Springer London
Copyright © 2017 by Springer-Verlag London
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial