Numerical Study of the Effects of Drainage Systems on Saturated/Unsaturated Seepage and Stability of Tailings Dams

Numerical Study of the Effects of Drainage Systems on Saturated/Unsaturated Seepage and Stability... The stability of tailings dams is affected by seepage characteristics such as the location of the phreatic surface inside the dam, the effects of the capillary fringe, and the unsaturated zone above the zero pore pressure level. In this study, the performance of drainage systems in tailings dams was investigated by analyzing saturated and unsaturated seepage in the dam, considering the effects of the construction method, tailings properties, and the type of drainage systems. First, general seepage characteristics in tailings dams were studied and the effects of non-homogeneity were investigated. Our results show that in a silty tailings dam with a height of 15 m, unsaturated plus capillary seepage flux can reach 13% of the total seepage. The total head vs. discharge volume curves under various conditions were compared and their practical implications are presented. Then, stability analyses were carried out using the results of seepage analyses for different construction methods, material properties, and drainage systems. Finally, a number of practical conclusions are drawn regarding dam stability and the efficiency of toe, blanket, and chimney drains in different construction methods. Using a blanket and/or a chimney drain can increase the stability safety factor by up to two times, depending on the type of material. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mine Water and the Environment Springer Journals

Numerical Study of the Effects of Drainage Systems on Saturated/Unsaturated Seepage and Stability of Tailings Dams

Loading next page...
 
/lp/springer_journal/numerical-study-of-the-effects-of-drainage-systems-on-saturated-jOI9n7LvZk
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Water Quality/Water Pollution; Hydrogeology; Mineral Resources; Ecotoxicology; Industrial Pollution Prevention
ISSN
1025-9112
eISSN
1616-1068
D.O.I.
10.1007/s10230-017-0468-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial