Numerical Study of Smoothly Perturbed Shocks in the Newtonian Limit

Numerical Study of Smoothly Perturbed Shocks in the Newtonian Limit Previous weakly nonlinear analyses of strong shocks in the Newtonian limit have shown that the main characteristics of the cellular pattern of detonations, namely the network of triple points propagating in the transverse direction, are associated with nonlinear mechanisms which are inherent to the leading shock (Clavin and Denet, Phys. Rev. Lett. 88(4), 044,502, 2002; Clavin, J. Fluid Mech. 721, 324–339, 2013). Motivated by this theoretical analysis, experimental and numerical studies have been conducted on a smoothly perturbed Mach 1.5 shock in air, reflected from a sinusoidal wall of small amplitude (Jourdan et al., Shock Waves 13(6), 501–504, 2004; Denet et al., Combust Sci. Technol. 187, 296–323, 2015; Lodato et al., J. Fluid Mech. 789, 221–258, 2016). Under such flow conditions, the reflected shock is relatively weak and the Newtonian limit, used in the above mentioned analysis, is rather far from being met. Despite of this, the theoretical results concerning the nonlinear dynamics of the shock front were, for the most part, confirmed. In an effort to get closer to the conditions of the theoretical analysis, namely strong shocks in the Newtonian limit, a similar numerical analysis is performed in the present study where the incident Mach number is increased up to 5 and the specific heat ratio is decreased down to 1.15, leading to reflected shocks Mach numbers of about 3.2. This provides additional evidence about the main driving mechanism behind the structure of cellular detonations. Theoretical predictions regarding the spontaneous formation and transverse velocity of the triple points are further confirmed. In particular, significant improvements are observed in reproducing the theoretically predicted trajectories of the triple points. As a result of the increased Mach number of the reflected shock, stronger vortex sheets are formed within the shocked gases. This enables to better assess the impact of the molecular viscosity—a previously left open question—but also to highlight similarities with cellular detonations on a wider range of heat releases. "Flow, Turbulence and Combustion" Springer Journals

Numerical Study of Smoothly Perturbed Shocks in the Newtonian Limit

Loading next page...
Springer Netherlands
Copyright © 2017 by Springer Science+Business Media B.V.
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer; Automotive Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial