Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets

Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets The measurement of droplet temperature and size distribution in sprays is a difficult task. To reach this aim, the global rainbow technique (GRT) has been developed on the assumption that the synthetic rainbow created by a large number of droplets is insensitive to the non-sphericity of droplets if the droplets’ orientations were sufficiently random. In order to test this assumption, numerical as well as experimental analyses of GRT are carried out by our team. As a companion to the work done in experiments, the objective of this work is to quantify the sensitivity of the GRT to the non-sphericity of droplets from a numerical aspect. Light scattering properties around the rainbow angle are investigated by using the Null-field method within a T-matrix formulation, both for a single spheroid in an arbitrary orientation and for an ensemble of spheroids in random orientations illuminated by a plane wave. Refractive index and size distribution of droplets are extracted from simulated global rainbow signals so as to quantify the sensitivity of the GRT to the non-sphericity. Exemplifying results are compiled and presented. Additionally, comparisons between the Null-field method and the generalized Lorenz-Mie theory for spheroids are also provided in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets

Loading next page...
 
/lp/springer_journal/numerical-study-of-global-rainbow-technique-sensitivity-to-non-qD9SQ0wnuM
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Fluid- and Aerodynamics; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-1036-4
Publisher site
See Article on Publisher Site

Abstract

The measurement of droplet temperature and size distribution in sprays is a difficult task. To reach this aim, the global rainbow technique (GRT) has been developed on the assumption that the synthetic rainbow created by a large number of droplets is insensitive to the non-sphericity of droplets if the droplets’ orientations were sufficiently random. In order to test this assumption, numerical as well as experimental analyses of GRT are carried out by our team. As a companion to the work done in experiments, the objective of this work is to quantify the sensitivity of the GRT to the non-sphericity of droplets from a numerical aspect. Light scattering properties around the rainbow angle are investigated by using the Null-field method within a T-matrix formulation, both for a single spheroid in an arbitrary orientation and for an ensemble of spheroids in random orientations illuminated by a plane wave. Refractive index and size distribution of droplets are extracted from simulated global rainbow signals so as to quantify the sensitivity of the GRT to the non-sphericity. Exemplifying results are compiled and presented. Additionally, comparisons between the Null-field method and the generalized Lorenz-Mie theory for spheroids are also provided in this paper.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 12, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off