# Numerical solutions for solving a class of fractional optimal control problems via fixed-point approach

Numerical solutions for solving a class of fractional optimal control problems via fixed-point... In this paper, an optimization problem is performed to obtain an approximate solution for a class of fractional optimal control problems (FOCPs) with the initial and final conditions. The main characteristic of our approximation is to reduce the FOCP into a system of Volterra integral equations. Then by solving this new problem, based on minimization and control the total error, we transform the original FOCP into a discrete optimization problem. By obtaining the optimal solutions of this problem, we obtain the numerical solution of the original problem. This procedure not only simplifies the problem but also speeds up the computations. The numerical solutions obtained from the proposed approximation indicate that this approach is easy to implement and accurate when applied to FOCPs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png SeMA Journal Springer Journals

# Numerical solutions for solving a class of fractional optimal control problems via fixed-point approach

, Volume 74 (4) – Jan 4, 2017
19 pages

/lp/springer_journal/numerical-solutions-for-solving-a-class-of-fractional-optimal-control-EDZcqOOvRH
Publisher
Springer Milan
Subject
Mathematics; Mathematics, general; Applications of Mathematics
ISSN
2254-3902
eISSN
2281-7875
D.O.I.
10.1007/s40324-016-0102-0
Publisher site
See Article on Publisher Site

### Abstract

In this paper, an optimization problem is performed to obtain an approximate solution for a class of fractional optimal control problems (FOCPs) with the initial and final conditions. The main characteristic of our approximation is to reduce the FOCP into a system of Volterra integral equations. Then by solving this new problem, based on minimization and control the total error, we transform the original FOCP into a discrete optimization problem. By obtaining the optimal solutions of this problem, we obtain the numerical solution of the original problem. This procedure not only simplifies the problem but also speeds up the computations. The numerical solutions obtained from the proposed approximation indicate that this approach is easy to implement and accurate when applied to FOCPs.

### Journal

SeMA JournalSpringer Journals

Published: Jan 4, 2017

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations