Numerical modeling to predict the spread of landslide of schist’s area under climatic event of Ain El Hammam (Algeria)

Numerical modeling to predict the spread of landslide of schist’s area under climatic event of... The several reactivations of the landslide of Ain El Hammam (AEH) after each important weather event compel us to look closely at its triggering factors and predict its mechanisms and its evolution at the longer term. In this sense, the prediction of the slope behavior becomes necessary. This paper presents a numerical model of the AEH landslide using Plaxis® software. This model considers hydraulic effects such as precipitation and pore pressure even in the unsaturated parts. Soil and rock behaviors are described with proper elasto-plastic models named Hardening Soils and Jointed Rocks. The first model takes into account hardening on isotropic and deviatoric mechanism as well as a non-associated flow rule. The second model considers a non-isotropic elasticity with perfect plasticity along with given sliding directions. The hydraulic and mechanical models are coupled with an effective stress concept. To detect unstable areas in the landslide, we developed a Matlab® program to take into account the Hill’s bifurcation criterion, which is based on sign of the second-order work. It has been proved that this criterion allows detecting all failure modes that can appear in rate-independent materials and especially the ones that develop before the plasticity limit criterion. From such computations, we can predict the shape and position of slip surface responsible of the actual ground movement of the slope. To validate the numerical results, analysis of field measurement is included. We use high resolution of electrical tomography to delineate the geometry and position of failure surface and approve our results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Arabian Journal of Geosciences Springer Journals

Numerical modeling to predict the spread of landslide of schist’s area under climatic event of Ain El Hammam (Algeria)

Loading next page...
 
/lp/springer_journal/numerical-modeling-to-predict-the-spread-of-landslide-of-schist-s-area-TqfKNi1cUS
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Saudi Society for Geosciences
Subject
Earth Sciences; Earth Sciences, general
ISSN
1866-7511
eISSN
1866-7538
D.O.I.
10.1007/s12517-017-3153-3
Publisher site
See Article on Publisher Site

Abstract

The several reactivations of the landslide of Ain El Hammam (AEH) after each important weather event compel us to look closely at its triggering factors and predict its mechanisms and its evolution at the longer term. In this sense, the prediction of the slope behavior becomes necessary. This paper presents a numerical model of the AEH landslide using Plaxis® software. This model considers hydraulic effects such as precipitation and pore pressure even in the unsaturated parts. Soil and rock behaviors are described with proper elasto-plastic models named Hardening Soils and Jointed Rocks. The first model takes into account hardening on isotropic and deviatoric mechanism as well as a non-associated flow rule. The second model considers a non-isotropic elasticity with perfect plasticity along with given sliding directions. The hydraulic and mechanical models are coupled with an effective stress concept. To detect unstable areas in the landslide, we developed a Matlab® program to take into account the Hill’s bifurcation criterion, which is based on sign of the second-order work. It has been proved that this criterion allows detecting all failure modes that can appear in rate-independent materials and especially the ones that develop before the plasticity limit criterion. From such computations, we can predict the shape and position of slip surface responsible of the actual ground movement of the slope. To validate the numerical results, analysis of field measurement is included. We use high resolution of electrical tomography to delineate the geometry and position of failure surface and approve our results.

Journal

Arabian Journal of GeosciencesSpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off