Numerical Modeling of Elastic Spherical Contact for Mohr-Coulomb Type Failures in Micro-Geomaterials

Numerical Modeling of Elastic Spherical Contact for Mohr-Coulomb Type Failures in Micro-Geomaterials The contact behavior for geological materials, such as reservoir shale rock, is simulated using the finite element method by considering a nano-indenter tip indenting into a geomaterial obeying the Mohr-Coulomb failure criterion. The deformation and slip at the micro-scale along the shear direction in grain-to-grain contact follows the Coulomb frictional/sliding failure criterion, while the linear elastic force-displacement law is enforced in the direction normal to the contact surface. A series of simulations are performed to study the effect of cohesion, friction angle, and tensile strength on the contact response. For a material with very high cohesion and frictionless contact, the indented geomaterial behaves almost purely as an elastic medium. In this case, the indentation process converges to the classic Hertz grain-to-grain spherical contact model. For a material with extremely low cohesion, the geomaterial behaves like cohesionless granular material at the micro-scale. For materials with finite cohesion values, such as shales, the force-displacement responses are analyzed and reported. This simulation is compared to micro-indentation tests using a spherical indenter tip conducted on preserved samples of Woodford shale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Mechanics Springer Journals

Numerical Modeling of Elastic Spherical Contact for Mohr-Coulomb Type Failures in Micro-Geomaterials

Loading next page...
 
/lp/springer_journal/numerical-modeling-of-elastic-spherical-contact-for-mohr-coulomb-type-kV0iclw25K
Publisher
Springer US
Copyright
Copyright © 2017 by Society for Experimental Mechanics
Subject
Engineering; Continuum Mechanics and Mechanics of Materials; Characterization and Evaluation of Materials; Optics, Lasers, Photonics, Optical Devices; Structural Mechanics; Vibration, Dynamical Systems, Control; Classical Mechanics
ISSN
0014-4851
eISSN
1741-2765
D.O.I.
10.1007/s11340-017-0301-3
Publisher site
See Article on Publisher Site

Abstract

The contact behavior for geological materials, such as reservoir shale rock, is simulated using the finite element method by considering a nano-indenter tip indenting into a geomaterial obeying the Mohr-Coulomb failure criterion. The deformation and slip at the micro-scale along the shear direction in grain-to-grain contact follows the Coulomb frictional/sliding failure criterion, while the linear elastic force-displacement law is enforced in the direction normal to the contact surface. A series of simulations are performed to study the effect of cohesion, friction angle, and tensile strength on the contact response. For a material with very high cohesion and frictionless contact, the indented geomaterial behaves almost purely as an elastic medium. In this case, the indentation process converges to the classic Hertz grain-to-grain spherical contact model. For a material with extremely low cohesion, the geomaterial behaves like cohesionless granular material at the micro-scale. For materials with finite cohesion values, such as shales, the force-displacement responses are analyzed and reported. This simulation is compared to micro-indentation tests using a spherical indenter tip conducted on preserved samples of Woodford shale.

Journal

Experimental MechanicsSpringer Journals

Published: Jun 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off