Numerical investigation of the influence of various factors on the propagation and transformation of solitary waves in the sea

Numerical investigation of the influence of various factors on the propagation and transformation... For various stratifications and different types of bottom patterns we study the transformations of solitary perturbations of density appearing in the depth of the sea. In the two-dimensional case, under the assumption that the average dynamic characteristics weakly vary in time as compared with the wave characteristics, we deduce the equations for mean currents and waves taking into account vertical and horizontal viscosity and the diffusion of density. Numerical examples show that the stratification, bottom topography, nonlinearity, mean currents, and dissipation strongly affect both the process of splitting of a solitary wave into wave trains and their amplitude and length. The wave currents exhibit the oscillatory (train-like) character. It is emphasized that, in the case of propagation of solitary perturbations of density with dissipation, it is also important to take into account the combined influence of nonlinearity, currents, bottom topography, and stratification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Numerical investigation of the influence of various factors on the propagation and transformation of solitary waves in the sea

Loading next page...
 
/lp/springer_journal/numerical-investigation-of-the-influence-of-various-factors-on-the-Kcl31I4Xqh
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by VSP
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/BF02508868
Publisher site
See Article on Publisher Site

Abstract

For various stratifications and different types of bottom patterns we study the transformations of solitary perturbations of density appearing in the depth of the sea. In the two-dimensional case, under the assumption that the average dynamic characteristics weakly vary in time as compared with the wave characteristics, we deduce the equations for mean currents and waves taking into account vertical and horizontal viscosity and the diffusion of density. Numerical examples show that the stratification, bottom topography, nonlinearity, mean currents, and dissipation strongly affect both the process of splitting of a solitary wave into wave trains and their amplitude and length. The wave currents exhibit the oscillatory (train-like) character. It is emphasized that, in the case of propagation of solitary perturbations of density with dissipation, it is also important to take into account the combined influence of nonlinearity, currents, bottom topography, and stratification.

Journal

Physical OceanographySpringer Journals

Published: Sep 17, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off