Numerical Investigation of the Effect of Additional Pulmonary Blood Flow on Patient-Specific Bilateral Bidirectional Glenn Hemodynamics

Numerical Investigation of the Effect of Additional Pulmonary Blood Flow on Patient-Specific... The effect of additional pulmonary blood flow (APBF) on the hemodynamics of bilateral bidirectional Glenn (BBDG) connection was marginally discussed in previous studies. This study assessed this effect using patient-specific numerical simulation. A 15-year-old female patient who underwent BBDG was enrolled in this study. Patient-specific anatomy, flow waveforms, and pressure tracings were obtained using computed tomography, Doppler ultrasound technology, and catheterization, respectively. Computational fluid dynamic simulations were performed to assess flow field and derived hemodynamic metrics of the BBDG connection with various APBF. APBF showed noticeable effects on the hemodynamics of the BBDG connection. It suppressed flow mixing in the connection, which resulted in a more antegrade flow structure. Also, as the APBF rate increases, both power loss and reflux in superior venae cavae (SVCs) monotonically increases while the flow ratio of the right to the left pulmonary artery (RPA/LPA) monotonically decreases. However, a non-monotonic relationship was observed between the APBF rate and indexed power loss. A high APBF rate may result in a good flow ratio of RPA/LPA but with the side effect of bad power loss and remarkable reflux in SVCs, and vice versa. A moderate APBF rate could be favourable because it leads to an optimal indexed power loss and achieves the acceptable flow ratio of RPA/LPA without causing severe power loss and reflux in SVCs. These findings suggest that patient-specific numerical simulation should be used to assist clinicians in determining an appropriate APBF rate based on desired outcomes on a patient-specific basis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cardiovascular Engineering and Technology Springer Journals

Numerical Investigation of the Effect of Additional Pulmonary Blood Flow on Patient-Specific Bilateral Bidirectional Glenn Hemodynamics

Loading next page...
 
/lp/springer_journal/numerical-investigation-of-the-effect-of-additional-pulmonary-blood-0zsAuHSVyS
Publisher
Springer US
Copyright
Copyright © 2018 by Biomedical Engineering Society
Subject
Engineering; Biomedical Engineering; Cardiology; Biomedicine, general
ISSN
1869-408X
eISSN
1869-4098
D.O.I.
10.1007/s13239-018-0341-6
Publisher site
See Article on Publisher Site

Abstract

The effect of additional pulmonary blood flow (APBF) on the hemodynamics of bilateral bidirectional Glenn (BBDG) connection was marginally discussed in previous studies. This study assessed this effect using patient-specific numerical simulation. A 15-year-old female patient who underwent BBDG was enrolled in this study. Patient-specific anatomy, flow waveforms, and pressure tracings were obtained using computed tomography, Doppler ultrasound technology, and catheterization, respectively. Computational fluid dynamic simulations were performed to assess flow field and derived hemodynamic metrics of the BBDG connection with various APBF. APBF showed noticeable effects on the hemodynamics of the BBDG connection. It suppressed flow mixing in the connection, which resulted in a more antegrade flow structure. Also, as the APBF rate increases, both power loss and reflux in superior venae cavae (SVCs) monotonically increases while the flow ratio of the right to the left pulmonary artery (RPA/LPA) monotonically decreases. However, a non-monotonic relationship was observed between the APBF rate and indexed power loss. A high APBF rate may result in a good flow ratio of RPA/LPA but with the side effect of bad power loss and remarkable reflux in SVCs, and vice versa. A moderate APBF rate could be favourable because it leads to an optimal indexed power loss and achieves the acceptable flow ratio of RPA/LPA without causing severe power loss and reflux in SVCs. These findings suggest that patient-specific numerical simulation should be used to assist clinicians in determining an appropriate APBF rate based on desired outcomes on a patient-specific basis.

Journal

Cardiovascular Engineering and TechnologySpringer Journals

Published: Jan 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off