Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model

Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model As a Lagrangian meshless method, smoothed particle hydrodynamics (SPH) method is robust in modelling multi-fluid flows with interface fragmentations. However, the application for the simulation of a rising bubble bursting at a fluid surface is rarely documented. In this paper, the multiphase SPH model is extended and applied to simulate this challenging phenomenon. Different numerical techniques developed in different SPH models are combined in the present SPH model. The adoption of a background pressure determined based on the surface tension can help to avoid tensile instability and interface penetrations. An accurate surface tension model is employed. This model is suitable for bubble rising problems of small scales and high density ratios. An interface sharpness force is adopted to achieve a smoother bubble surface. A suitable formula of viscous force, which is proven to be able to accurately capture the bubble splitting and small bubble detachment, is employed. Moreover, a modified prediction-correction time-stepping scheme for a better numerical stability and allows a relatively larger CFL factor is adopted. It is also worthwhile to mention that the particle shifting technique, which helps to make the particle distribute in an arrangement of lower disorder, can significantly improve the numerical accuracy. Regarding the treatment of the fluid surface, particles of lighter phase are arranged above the free surface of the denser phase to avoid the kernel truncation in the density approximation. Furthermore, this technique also allows an accurate calculation of the surface tension on the fluid surface. A number of cases of bubbly flows are presented, which confirms the capability of the present multiphase SPH model in modelling complex bubble-surface interactions with the density ratio and viscosity ratio up to 1000 and 100 respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Meccanica Springer Journals

Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model

Loading next page...
 
/lp/springer_journal/numerical-investigation-of-rising-bubbles-bursting-at-a-free-surface-Qeehk10bex
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media Dordrecht
Subject
Physics; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
ISSN
0025-6455
eISSN
1572-9648
D.O.I.
10.1007/s11012-017-0634-0
Publisher site
See Article on Publisher Site

Abstract

As a Lagrangian meshless method, smoothed particle hydrodynamics (SPH) method is robust in modelling multi-fluid flows with interface fragmentations. However, the application for the simulation of a rising bubble bursting at a fluid surface is rarely documented. In this paper, the multiphase SPH model is extended and applied to simulate this challenging phenomenon. Different numerical techniques developed in different SPH models are combined in the present SPH model. The adoption of a background pressure determined based on the surface tension can help to avoid tensile instability and interface penetrations. An accurate surface tension model is employed. This model is suitable for bubble rising problems of small scales and high density ratios. An interface sharpness force is adopted to achieve a smoother bubble surface. A suitable formula of viscous force, which is proven to be able to accurately capture the bubble splitting and small bubble detachment, is employed. Moreover, a modified prediction-correction time-stepping scheme for a better numerical stability and allows a relatively larger CFL factor is adopted. It is also worthwhile to mention that the particle shifting technique, which helps to make the particle distribute in an arrangement of lower disorder, can significantly improve the numerical accuracy. Regarding the treatment of the fluid surface, particles of lighter phase are arranged above the free surface of the denser phase to avoid the kernel truncation in the density approximation. Furthermore, this technique also allows an accurate calculation of the surface tension on the fluid surface. A number of cases of bubbly flows are presented, which confirms the capability of the present multiphase SPH model in modelling complex bubble-surface interactions with the density ratio and viscosity ratio up to 1000 and 100 respectively.

Journal

MeccanicaSpringer Journals

Published: Feb 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off