Numerical-experimental investigation on the rabbit ear formation mechanism in gear rolling

Numerical-experimental investigation on the rabbit ear formation mechanism in gear rolling The formation of rabbit ears during the gear rolling process, caused by the generating motion between the gear roller and the blank, is a common and undesirable phenomenon encountered in gear rolling. It generally leads to fold defects, waste of material, and decline in mechanical properties after removal, seriously affecting the quality of the gear to be formed. In this paper, a finite element model of gear rolling is first established, the gear rolling process are simulated, and the rabbit ear formation mechanism and its morphology change are studied. The phenomenon and the morphology of the rabbit ear are then verified experimentally. The formation mechanism of the rabbit ear was analyzed by means of the stress state, the deformation distribution, and the material flow. The results show the following: (1) the continuous localized contact between the gear roller and the blank induces the material on the surface area of the tooth sequential plastic deformation, while at the same time, the material is squeezed by the tooth flank of the gear roller and flows towards the direction of the smaller resistance, that is, the flank of the tooth. The difference in the material flow velocity between the flank of the tooth and the center of the tooth leads to the formation of the rabbit ear; (2) the asymmetric shape of the ears appears to be related to the different direction of friction exerted on two sides of the tooth depending on the rotational direction of the gear roller. These findings provide a scientific basis to further explore measures to control the rabbit ear defect and improve the forming quality in gear rolling. The International Journal of Advanced Manufacturing Technology Springer Journals

Numerical-experimental investigation on the rabbit ear formation mechanism in gear rolling

Loading next page...
Springer London
Copyright © 2017 by Springer-Verlag London
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial