Numerical-experimental investigation on the rabbit ear formation mechanism in gear rolling

Numerical-experimental investigation on the rabbit ear formation mechanism in gear rolling The formation of rabbit ears during the gear rolling process, caused by the generating motion between the gear roller and the blank, is a common and undesirable phenomenon encountered in gear rolling. It generally leads to fold defects, waste of material, and decline in mechanical properties after removal, seriously affecting the quality of the gear to be formed. In this paper, a finite element model of gear rolling is first established, the gear rolling process are simulated, and the rabbit ear formation mechanism and its morphology change are studied. The phenomenon and the morphology of the rabbit ear are then verified experimentally. The formation mechanism of the rabbit ear was analyzed by means of the stress state, the deformation distribution, and the material flow. The results show the following: (1) the continuous localized contact between the gear roller and the blank induces the material on the surface area of the tooth sequential plastic deformation, while at the same time, the material is squeezed by the tooth flank of the gear roller and flows towards the direction of the smaller resistance, that is, the flank of the tooth. The difference in the material flow velocity between the flank of the tooth and the center of the tooth leads to the formation of the rabbit ear; (2) the asymmetric shape of the ears appears to be related to the different direction of friction exerted on two sides of the tooth depending on the rotational direction of the gear roller. These findings provide a scientific basis to further explore measures to control the rabbit ear defect and improve the forming quality in gear rolling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Numerical-experimental investigation on the rabbit ear formation mechanism in gear rolling

Loading next page...
 
/lp/springer_journal/numerical-experimental-investigation-on-the-rabbit-ear-formation-biH4NmU6ew
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0009-7
Publisher site
See Article on Publisher Site

Abstract

The formation of rabbit ears during the gear rolling process, caused by the generating motion between the gear roller and the blank, is a common and undesirable phenomenon encountered in gear rolling. It generally leads to fold defects, waste of material, and decline in mechanical properties after removal, seriously affecting the quality of the gear to be formed. In this paper, a finite element model of gear rolling is first established, the gear rolling process are simulated, and the rabbit ear formation mechanism and its morphology change are studied. The phenomenon and the morphology of the rabbit ear are then verified experimentally. The formation mechanism of the rabbit ear was analyzed by means of the stress state, the deformation distribution, and the material flow. The results show the following: (1) the continuous localized contact between the gear roller and the blank induces the material on the surface area of the tooth sequential plastic deformation, while at the same time, the material is squeezed by the tooth flank of the gear roller and flows towards the direction of the smaller resistance, that is, the flank of the tooth. The difference in the material flow velocity between the flank of the tooth and the center of the tooth leads to the formation of the rabbit ear; (2) the asymmetric shape of the ears appears to be related to the different direction of friction exerted on two sides of the tooth depending on the rotational direction of the gear roller. These findings provide a scientific basis to further explore measures to control the rabbit ear defect and improve the forming quality in gear rolling.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Jan 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off