Numerical-ecotoxicological approach to assess potential risk associated with oilfield production chemicals discharged into the sea

Numerical-ecotoxicological approach to assess potential risk associated with oilfield production... Several different chemical products are used on oil platforms to aid oil-water separation during the production process. These chemicals may enter into the sea by means of production water (PW), the main discharge derived from oil and gas offshore platforms. Consequently, toxic effects may occur in the marine environment, causing reductions in wildlife numbers, degrading ecosystem functions and threatening human health. For most of these chemicals, environmental toxicity and safety thresholds in marine ecosystems have not been fully investigated as yet. In this work, a numerical-ecotoxicological approach is proposed to assess the potential environmental risk associated with the discharge of five oilfield production chemicals (deoiler, scale inhibitor, corrosion inhibitor, catalyst, dehydrating agent) from a platform in the southern Adriatic Sea (Mediterranean Sea). Their concentrations in the seawater are numerically predicted, under different seasonal conditions, starting from the real concentrations used during the production process. The predicted concentrations are then evaluated in terms of possible toxic effects in order to assess the potential risk of oilfield production chemicals discharged into the sea. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Numerical-ecotoxicological approach to assess potential risk associated with oilfield production chemicals discharged into the sea

Loading next page...
 
/lp/springer_journal/numerical-ecotoxicological-approach-to-assess-potential-risk-IlRiRS4PZX
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-2355-x
Publisher site
See Article on Publisher Site

Abstract

Several different chemical products are used on oil platforms to aid oil-water separation during the production process. These chemicals may enter into the sea by means of production water (PW), the main discharge derived from oil and gas offshore platforms. Consequently, toxic effects may occur in the marine environment, causing reductions in wildlife numbers, degrading ecosystem functions and threatening human health. For most of these chemicals, environmental toxicity and safety thresholds in marine ecosystems have not been fully investigated as yet. In this work, a numerical-ecotoxicological approach is proposed to assess the potential environmental risk associated with the discharge of five oilfield production chemicals (deoiler, scale inhibitor, corrosion inhibitor, catalyst, dehydrating agent) from a platform in the southern Adriatic Sea (Mediterranean Sea). Their concentrations in the seawater are numerically predicted, under different seasonal conditions, starting from the real concentrations used during the production process. The predicted concentrations are then evaluated in terms of possible toxic effects in order to assess the potential risk of oilfield production chemicals discharged into the sea.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off