Numerical/analytical solutions to the elastic response of arbitrarily functionally graded polar orthotropic rotating discs

Numerical/analytical solutions to the elastic response of arbitrarily functionally graded polar... A substantial elastic analysis of uniform rotating discs made of radially functionally graded (FG) polar orthotropic materials is managed with both analytical and numerical methods by imposing possible boundary conditions and frequently used material grading rules such as a simple power and an exponential patterns. The complementary functions method (CFM) is originally chosen as a numerical technique to solve the governing equation having variable coefficients. Before applying CFM on the current two-point boundary value problem, the governing equation derived by the transformed on-axis in-plane stiffness terms is transformed into the initial value problem. To show the effectiveness of the method, as an additional study, some closed-form formulas are obtained to cover the rotating uniform discs made of functionally simple power-law graded polar orthotropic materials under the same constraints. It was shown that both analytical and numerical results display a perfect harmony. An extensive parametric study which considers physically or hypothetically exist different material types, several inhomogeneity indexes, anisotropy degrees varying in a wide range of 0.3–5, three types of boundary conditions, is conducted with the help of both analytical formulas and numerical solutions. To the best of the author’s knowledge, although especially the anisotropy effects have been worked through for ordinary polar orthotropic materials, investigations on the anisotropy degrees on the elastic behaviour of discs made of an advanced material having varying properties along the desired directions such as a FG anisotropic material is still so limited and requires vast knowledge. Since different transformed stiffness terms through the radial direction may be developed by considering different fibre orientations, present results comprising anisotropy effects may also be interpreted as the results of such discs made of specially orthotropic materials such as cross-ply or balanced symmetrical laminates. It is mainly concluded that the use of a radially FG anisotropic material having an anisotropy degree less than the unit proposes admissible circumferential stresses along with the effective properties which continuously radially increase from the inner surface towards the outer under centrifugal forces. On the other hand, anisotropy degrees greater than the unit with increasing material properties from the inner surface to the outer mitigates the radial stresses. Negative inhomogeneity indexes with smaller anisotropy degrees are preferable to get smaller radial displacements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Numerical/analytical solutions to the elastic response of arbitrarily functionally graded polar orthotropic rotating discs

Loading next page...
 
/lp/springer_journal/numerical-analytical-solutions-to-the-elastic-response-of-arbitrarily-Y9y5wAUA54
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-018-1216-3
Publisher site
See Article on Publisher Site

Abstract

A substantial elastic analysis of uniform rotating discs made of radially functionally graded (FG) polar orthotropic materials is managed with both analytical and numerical methods by imposing possible boundary conditions and frequently used material grading rules such as a simple power and an exponential patterns. The complementary functions method (CFM) is originally chosen as a numerical technique to solve the governing equation having variable coefficients. Before applying CFM on the current two-point boundary value problem, the governing equation derived by the transformed on-axis in-plane stiffness terms is transformed into the initial value problem. To show the effectiveness of the method, as an additional study, some closed-form formulas are obtained to cover the rotating uniform discs made of functionally simple power-law graded polar orthotropic materials under the same constraints. It was shown that both analytical and numerical results display a perfect harmony. An extensive parametric study which considers physically or hypothetically exist different material types, several inhomogeneity indexes, anisotropy degrees varying in a wide range of 0.3–5, three types of boundary conditions, is conducted with the help of both analytical formulas and numerical solutions. To the best of the author’s knowledge, although especially the anisotropy effects have been worked through for ordinary polar orthotropic materials, investigations on the anisotropy degrees on the elastic behaviour of discs made of an advanced material having varying properties along the desired directions such as a FG anisotropic material is still so limited and requires vast knowledge. Since different transformed stiffness terms through the radial direction may be developed by considering different fibre orientations, present results comprising anisotropy effects may also be interpreted as the results of such discs made of specially orthotropic materials such as cross-ply or balanced symmetrical laminates. It is mainly concluded that the use of a radially FG anisotropic material having an anisotropy degree less than the unit proposes admissible circumferential stresses along with the effective properties which continuously radially increase from the inner surface towards the outer under centrifugal forces. On the other hand, anisotropy degrees greater than the unit with increasing material properties from the inner surface to the outer mitigates the radial stresses. Negative inhomogeneity indexes with smaller anisotropy degrees are preferable to get smaller radial displacements.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off