Nucleotide diversity and linkage disequilibrium of adaptive significant genes in Larix (Pinaceae)

Nucleotide diversity and linkage disequilibrium of adaptive significant genes in Larix (Pinaceae) Nucleotide polymorphism in genes potentially responsible for the adaptation to the latitudinal gradient of climate was investigated in the Siberian larch (Larix sibirica). The genes were selected among those previously studied in Douglas fir (Pseudotsuga menziesii), the variability of which indicates the influence of selection or shows the association with phenotypic traits that are important for adaptation to low temperatures and to geographically heterogeneous environment. Nucleotide sequences of eight genes, including coding and noncoding regions, were amplified and sequenced using newly developed primers specific to Larix. The sample size was 123 megagametophytes per locus in L. sibirica and 16.2 in L. occidentalis, which was taken as the outgroup. The length of the sequenced fragments was 246–1700 bp. Nucleotide polymorphism π averaged 0.00536 (0.002–0.008), and haplotype diversity was H d: 0.822 (0.625–0.948). Tajima’s D was negative in all fragments and significant in three, while statistics D* and F* was significant in three and four segments, respectively, and F s was significant in three. This may indicate the presence of purifying selection on these genes or population growth. The HKA test revealed no significant deviations from the neutral model of evolution in all genes. The recombination parameter ρ/θ = 0.28 was close to the value obtained from P. menziesii. To investigate the association of polymorphic sites (factor) in these eight genes to the latitude of investigated individuals (trait), the generalized linear model (GLM) was used taking into account the population structure. After false discovery rate (FDR) correction, no significant associations were found. The age of the split of American and Eurasian Larix lineages based on the nucleotide differences in the eight genes between L. sibirica and L. occidentalis is estimated to be 12 million years, which is much younger than the age of the most ancient Larix fossils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Nucleotide diversity and linkage disequilibrium of adaptive significant genes in Larix (Pinaceae)

Loading next page...
 
/lp/springer_journal/nucleotide-diversity-and-linkage-disequilibrium-of-adaptive-tzdgUlHcUY
Publisher
Springer US
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S102279541309007X
Publisher site
See Article on Publisher Site

Abstract

Nucleotide polymorphism in genes potentially responsible for the adaptation to the latitudinal gradient of climate was investigated in the Siberian larch (Larix sibirica). The genes were selected among those previously studied in Douglas fir (Pseudotsuga menziesii), the variability of which indicates the influence of selection or shows the association with phenotypic traits that are important for adaptation to low temperatures and to geographically heterogeneous environment. Nucleotide sequences of eight genes, including coding and noncoding regions, were amplified and sequenced using newly developed primers specific to Larix. The sample size was 123 megagametophytes per locus in L. sibirica and 16.2 in L. occidentalis, which was taken as the outgroup. The length of the sequenced fragments was 246–1700 bp. Nucleotide polymorphism π averaged 0.00536 (0.002–0.008), and haplotype diversity was H d: 0.822 (0.625–0.948). Tajima’s D was negative in all fragments and significant in three, while statistics D* and F* was significant in three and four segments, respectively, and F s was significant in three. This may indicate the presence of purifying selection on these genes or population growth. The HKA test revealed no significant deviations from the neutral model of evolution in all genes. The recombination parameter ρ/θ = 0.28 was close to the value obtained from P. menziesii. To investigate the association of polymorphic sites (factor) in these eight genes to the latitude of investigated individuals (trait), the generalized linear model (GLM) was used taking into account the population structure. After false discovery rate (FDR) correction, no significant associations were found. The age of the split of American and Eurasian Larix lineages based on the nucleotide differences in the eight genes between L. sibirica and L. occidentalis is estimated to be 12 million years, which is much younger than the age of the most ancient Larix fossils.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 15, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off