Nuclear mtDNA pseudogenes as a source of new variants of the mtDNA cytochrome b haplotypes: A case study of Siberian rubythroat Luscinia calliope (Muscicapidae, Aves)

Nuclear mtDNA pseudogenes as a source of new variants of the mtDNA cytochrome b haplotypes: A... Sequence polymorphism of the mitochondrial DNA cytochrome b gene fragment was analyzed in 21 specimens of subspecies Luscinia calliope calliope (Pallas, 1776) and two specimens of L. c. anadyrensis (Portenko, 1939). On sequence chromatograms, in 19 specimens of L. c. calliope, double peaks of heteroplasmy type in the taxon-specific positions were revealed. Moreover, two clone variants were identified. The first variant was the calliope mitochondrial cyt b gene and the second was the nuclear cyt b pseudogene, similar to the mitochondrial haplotype anadyrensis-camtschatkensis. In L. c. anadyrensis, four clone variants, represented by the mitochondrial calliope and anadyrensis-camtschatkensis cyt b genes and nuclear calliope and sachalinensis cyt b pseudogenes, were identified. Some nuclear cyt b pseudogenes were highly similar (98–99%) to the mitochondrial genes of the subspecies L. c. anadyrensis, L. c. camtschatkensis, and L. c. sachalinensis. In the same time, the majority of nuclear pseudogene sequences were characterized by a high level of polymorphism, caused by nonsynonymous substitutions (up to five substitutions per sequence), the presence of indels in some of the clones, and TAA and TGA stop codons. In our opinion, the mitochondrial haplotypes anadyrensis-camtschatkensis and sachalinensis occurred as a result of intergenomic homologous recombination. This finding provides a new insight into the colonization history of the northeastern part of the range by L. calliope, according to which populating the territory of Chukotka, Kamchatka, and Sakhalin took place at different times and along the independent pathways. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Nuclear mtDNA pseudogenes as a source of new variants of the mtDNA cytochrome b haplotypes: A case study of Siberian rubythroat Luscinia calliope (Muscicapidae, Aves)

Loading next page...
 
/lp/springer_journal/nuclear-mtdna-pseudogenes-as-a-source-of-new-variants-of-the-mtdna-0MfXpUaUw3
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795416090131
Publisher site
See Article on Publisher Site

Abstract

Sequence polymorphism of the mitochondrial DNA cytochrome b gene fragment was analyzed in 21 specimens of subspecies Luscinia calliope calliope (Pallas, 1776) and two specimens of L. c. anadyrensis (Portenko, 1939). On sequence chromatograms, in 19 specimens of L. c. calliope, double peaks of heteroplasmy type in the taxon-specific positions were revealed. Moreover, two clone variants were identified. The first variant was the calliope mitochondrial cyt b gene and the second was the nuclear cyt b pseudogene, similar to the mitochondrial haplotype anadyrensis-camtschatkensis. In L. c. anadyrensis, four clone variants, represented by the mitochondrial calliope and anadyrensis-camtschatkensis cyt b genes and nuclear calliope and sachalinensis cyt b pseudogenes, were identified. Some nuclear cyt b pseudogenes were highly similar (98–99%) to the mitochondrial genes of the subspecies L. c. anadyrensis, L. c. camtschatkensis, and L. c. sachalinensis. In the same time, the majority of nuclear pseudogene sequences were characterized by a high level of polymorphism, caused by nonsynonymous substitutions (up to five substitutions per sequence), the presence of indels in some of the clones, and TAA and TGA stop codons. In our opinion, the mitochondrial haplotypes anadyrensis-camtschatkensis and sachalinensis occurred as a result of intergenomic homologous recombination. This finding provides a new insight into the colonization history of the northeastern part of the range by L. calliope, according to which populating the territory of Chukotka, Kamchatka, and Sakhalin took place at different times and along the independent pathways.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off