Nuclear matrix proteins and hereditary diseases

Nuclear matrix proteins and hereditary diseases The review summarizes literature data on alterations of structure or expression of different nuclear matrix proteins in hereditary syndromes. From the point of view of involvement of nuclear matrix proteins in etiology and pathogenesis of the disease, hereditary pathologies can be classified in pathologies with pathogenesis associated with defects of nuclear matrix proteins and pathologies associated to changes of the nuclear matrix protein spectrum. The first group includes laminopathies, hereditary diseases with abnormal nuclear-matrix associated proteins and triplet extension diseases associated with accumulation of abnormal proteins in the nuclear matrix. Laminopathies are hereditary diseases coupled to structural defects of the nuclear lamina. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison-Gilford progeria syndrome (HGS), Greenberg skeletal dysplasia, and Pelger-Huet anomaly (PHA). Most of them are due to mutations in the lamin A/C gene, one—to mutations in emerin gene, some are associated with mutations in Lamin B receptor gene. In Werner’s, Bloom’s, Cockayne’s syndromes, Fanconi anemia, multiple carboxylase deficiency mutations in nuclear matrix protein or enzyme gene lead to deficient DNA repair, abnormal regulation of cell growth and differentiation or other specific metabolic functions. Proteins with a long polyglutamic tract synthesized in the cells of patients with dentato-rubral and pallido-luysian atrophy, myotonic dystrophy and Huntington disease interfere with transcription on the nuclear matrix. Down’s syndrome is a representative of the group of diseases with altered nuclear matrix protein spectrum. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Nuclear matrix proteins and hereditary diseases

Loading next page...
 
/lp/springer_journal/nuclear-matrix-proteins-and-hereditary-diseases-IKh8D79FqA
Publisher
Springer Journals
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1007/s11177-005-0076-y
Publisher site
See Article on Publisher Site

Abstract

The review summarizes literature data on alterations of structure or expression of different nuclear matrix proteins in hereditary syndromes. From the point of view of involvement of nuclear matrix proteins in etiology and pathogenesis of the disease, hereditary pathologies can be classified in pathologies with pathogenesis associated with defects of nuclear matrix proteins and pathologies associated to changes of the nuclear matrix protein spectrum. The first group includes laminopathies, hereditary diseases with abnormal nuclear-matrix associated proteins and triplet extension diseases associated with accumulation of abnormal proteins in the nuclear matrix. Laminopathies are hereditary diseases coupled to structural defects of the nuclear lamina. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison-Gilford progeria syndrome (HGS), Greenberg skeletal dysplasia, and Pelger-Huet anomaly (PHA). Most of them are due to mutations in the lamin A/C gene, one—to mutations in emerin gene, some are associated with mutations in Lamin B receptor gene. In Werner’s, Bloom’s, Cockayne’s syndromes, Fanconi anemia, multiple carboxylase deficiency mutations in nuclear matrix protein or enzyme gene lead to deficient DNA repair, abnormal regulation of cell growth and differentiation or other specific metabolic functions. Proteins with a long polyglutamic tract synthesized in the cells of patients with dentato-rubral and pallido-luysian atrophy, myotonic dystrophy and Huntington disease interfere with transcription on the nuclear matrix. Down’s syndrome is a representative of the group of diseases with altered nuclear matrix protein spectrum.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Apr 12, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off