Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare)-T. aestivum

Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in... Alloplasmic lines combining alien nuclear and cytoplasmic genomes are convenient models for studying the mechanisms of nuclear-cytoplasmic compatibility/incompatibility. In the present study, we have investigated the correlation between the characters and state of mitochondrial (mt) and chloroplast (cp) DNA regions in alloplasmic recombinant common wheat lines with barley cytoplasm characterized by partial or total fertility. Fertility restoration in the studied lines (Hordeum vulgare)-Triticum aestivum is determined by different ratios of the genetic material of common wheat variety Pyrotrix 28, which is a fertility restorer in the cytoplasm of barley, and variety Saratovskaya 29, which is a fixer of sterility. In partially fertile lines with nuclear genomes dominated by the genetic material of Saratovskaya 29, plant growth and development are suppressed. In these lines we have identified the barley homoplasmy of cpDNA regions infA and rpoB and the heteroplasmy of the 18S/5S mt repeat and the cpDNA ycf5 region. Nuclear-cytoplasmic compatibility in lines with reduced fertility (the genetic material of Pyrotrix 28 predominates in their nuclear genomes) is associated with restoration of normal plant growth and development and the changes in the state of the studied cpDNA and mtDNA regions towards the wheat type. Thus, in fertile lines, the cpDNA regions (infA, rpoB) and the 18S/5S mt repeat were identified in the homoplasmic wheat state; though the cpDNA ycf5 region was in the heteroplasmic state, it was dominated by the wheat type of the copies. The nuclear-cytoplasmic compatibility is not broken as a result of introgression of the alien genetic material into the nuclear genome of one of the fertile lines; the plants of introgressive lines are fertile and normally developed, and the states of the cpDNA and mtDNA regions correspond to their states in fertile recombinant lines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare)-T. aestivum

Loading next page...
 
/lp/springer_journal/nuclear-cytoplasmic-compatibility-and-the-state-of-mitochondrial-and-ETtP4NK0T0

References (38)

Publisher
Springer Journals
Copyright
Copyright © 2014 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
DOI
10.1134/S102279541410010X
Publisher site
See Article on Publisher Site

Abstract

Alloplasmic lines combining alien nuclear and cytoplasmic genomes are convenient models for studying the mechanisms of nuclear-cytoplasmic compatibility/incompatibility. In the present study, we have investigated the correlation between the characters and state of mitochondrial (mt) and chloroplast (cp) DNA regions in alloplasmic recombinant common wheat lines with barley cytoplasm characterized by partial or total fertility. Fertility restoration in the studied lines (Hordeum vulgare)-Triticum aestivum is determined by different ratios of the genetic material of common wheat variety Pyrotrix 28, which is a fertility restorer in the cytoplasm of barley, and variety Saratovskaya 29, which is a fixer of sterility. In partially fertile lines with nuclear genomes dominated by the genetic material of Saratovskaya 29, plant growth and development are suppressed. In these lines we have identified the barley homoplasmy of cpDNA regions infA and rpoB and the heteroplasmy of the 18S/5S mt repeat and the cpDNA ycf5 region. Nuclear-cytoplasmic compatibility in lines with reduced fertility (the genetic material of Pyrotrix 28 predominates in their nuclear genomes) is associated with restoration of normal plant growth and development and the changes in the state of the studied cpDNA and mtDNA regions towards the wheat type. Thus, in fertile lines, the cpDNA regions (infA, rpoB) and the 18S/5S mt repeat were identified in the homoplasmic wheat state; though the cpDNA ycf5 region was in the heteroplasmic state, it was dominated by the wheat type of the copies. The nuclear-cytoplasmic compatibility is not broken as a result of introgression of the alien genetic material into the nuclear genome of one of the fertile lines; the plants of introgressive lines are fertile and normally developed, and the states of the cpDNA and mtDNA regions correspond to their states in fertile recombinant lines.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 23, 2014

There are no references for this article.