Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare)-T. aestivum

Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in... Alloplasmic lines combining alien nuclear and cytoplasmic genomes are convenient models for studying the mechanisms of nuclear-cytoplasmic compatibility/incompatibility. In the present study, we have investigated the correlation between the characters and state of mitochondrial (mt) and chloroplast (cp) DNA regions in alloplasmic recombinant common wheat lines with barley cytoplasm characterized by partial or total fertility. Fertility restoration in the studied lines (Hordeum vulgare)-Triticum aestivum is determined by different ratios of the genetic material of common wheat variety Pyrotrix 28, which is a fertility restorer in the cytoplasm of barley, and variety Saratovskaya 29, which is a fixer of sterility. In partially fertile lines with nuclear genomes dominated by the genetic material of Saratovskaya 29, plant growth and development are suppressed. In these lines we have identified the barley homoplasmy of cpDNA regions infA and rpoB and the heteroplasmy of the 18S/5S mt repeat and the cpDNA ycf5 region. Nuclear-cytoplasmic compatibility in lines with reduced fertility (the genetic material of Pyrotrix 28 predominates in their nuclear genomes) is associated with restoration of normal plant growth and development and the changes in the state of the studied cpDNA and mtDNA regions towards the wheat type. Thus, in fertile lines, the cpDNA regions (infA, rpoB) and the 18S/5S mt repeat were identified in the homoplasmic wheat state; though the cpDNA ycf5 region was in the heteroplasmic state, it was dominated by the wheat type of the copies. The nuclear-cytoplasmic compatibility is not broken as a result of introgression of the alien genetic material into the nuclear genome of one of the fertile lines; the plants of introgressive lines are fertile and normally developed, and the states of the cpDNA and mtDNA regions correspond to their states in fertile recombinant lines. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare)-T. aestivum

Loading next page...
 
/lp/springer_journal/nuclear-cytoplasmic-compatibility-and-the-state-of-mitochondrial-and-ETtP4NK0T0
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S102279541410010X
Publisher site
See Article on Publisher Site

Abstract

Alloplasmic lines combining alien nuclear and cytoplasmic genomes are convenient models for studying the mechanisms of nuclear-cytoplasmic compatibility/incompatibility. In the present study, we have investigated the correlation between the characters and state of mitochondrial (mt) and chloroplast (cp) DNA regions in alloplasmic recombinant common wheat lines with barley cytoplasm characterized by partial or total fertility. Fertility restoration in the studied lines (Hordeum vulgare)-Triticum aestivum is determined by different ratios of the genetic material of common wheat variety Pyrotrix 28, which is a fertility restorer in the cytoplasm of barley, and variety Saratovskaya 29, which is a fixer of sterility. In partially fertile lines with nuclear genomes dominated by the genetic material of Saratovskaya 29, plant growth and development are suppressed. In these lines we have identified the barley homoplasmy of cpDNA regions infA and rpoB and the heteroplasmy of the 18S/5S mt repeat and the cpDNA ycf5 region. Nuclear-cytoplasmic compatibility in lines with reduced fertility (the genetic material of Pyrotrix 28 predominates in their nuclear genomes) is associated with restoration of normal plant growth and development and the changes in the state of the studied cpDNA and mtDNA regions towards the wheat type. Thus, in fertile lines, the cpDNA regions (infA, rpoB) and the 18S/5S mt repeat were identified in the homoplasmic wheat state; though the cpDNA ycf5 region was in the heteroplasmic state, it was dominated by the wheat type of the copies. The nuclear-cytoplasmic compatibility is not broken as a result of introgression of the alien genetic material into the nuclear genome of one of the fertile lines; the plants of introgressive lines are fertile and normally developed, and the states of the cpDNA and mtDNA regions correspond to their states in fertile recombinant lines.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 23, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off