NSP5 phosphorylation regulates the fate of viral mRNA in rotavirus infected cells

NSP5 phosphorylation regulates the fate of viral mRNA in rotavirus infected cells Elucidation of the function of the non-structural rotavirus proteins during infection is difficult in the absence of a reverse genetic system. To study the role of NSP5, nonstructural phosphoprotein NSP5, we constructed a reassortant strain (SACC11) in the SA11 background that harbours a heterologous segment 11 encoding a variant protein (h-NSP5). Cells infected by SACC11 produced viral polypeptides at earlier times than SA11 infected cells while showing less accumulation of genomic dsRNA. These changes suggested that NSP5 might direct viral messenger RNA to protein synthesis or genome replication. Distinct patterns of proteins were shown to form complexes with NSP5 in co-immunoprecipitation studies with SA11 and SACC11 infected cells. Recombinant h-NSP5 from either bacteria or eucaryotic cells migrated faster in PAGE suggesting that it was hypophosphorylated. Indeed, the kinase inhibitor H-7 enhanced translation of viral proteins in SA11 but not SACC11 infected cells suggesting that NSP5 function in the regulation of the fate of viral positive strand RNA is mediated by phosphorylation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

NSP5 phosphorylation regulates the fate of viral mRNA in rotavirus infected cells

Loading next page...
 
/lp/springer_journal/nsp5-phosphorylation-regulates-the-fate-of-viral-mrna-in-rotavirus-tpV1MOFSgS
Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-002-0856-9
Publisher site
See Article on Publisher Site

Abstract

Elucidation of the function of the non-structural rotavirus proteins during infection is difficult in the absence of a reverse genetic system. To study the role of NSP5, nonstructural phosphoprotein NSP5, we constructed a reassortant strain (SACC11) in the SA11 background that harbours a heterologous segment 11 encoding a variant protein (h-NSP5). Cells infected by SACC11 produced viral polypeptides at earlier times than SA11 infected cells while showing less accumulation of genomic dsRNA. These changes suggested that NSP5 might direct viral messenger RNA to protein synthesis or genome replication. Distinct patterns of proteins were shown to form complexes with NSP5 in co-immunoprecipitation studies with SA11 and SACC11 infected cells. Recombinant h-NSP5 from either bacteria or eucaryotic cells migrated faster in PAGE suggesting that it was hypophosphorylated. Indeed, the kinase inhibitor H-7 enhanced translation of viral proteins in SA11 but not SACC11 infected cells suggesting that NSP5 function in the regulation of the fate of viral positive strand RNA is mediated by phosphorylation.

Journal

Archives of VirologySpringer Journals

Published: Sep 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off