Novel solvent-controlled chemoselective palladium/copper(II) halide catalyzed oligomerization of tert-butyl acetylene

Novel solvent-controlled chemoselective palladium/copper(II) halide catalyzed oligomerization of... Solvent-controlled chemoselective palladium-catalyzed oligomerization of tert-butyl acetylene is reported in this paper. The reaction was carried out smoothly in benzene/n-BuOH binary solvent system. When unpolar aprotic benzene was the preponderating component in the binary system, a cyclotrimerization process occurred to produce 1,3,5-tri-tert-butylbenzene via a mechanism of three acetylene molecules, inserted step by step, forming σ-butadienyl-Pd and σ-hexatrienyl-Pd intermediates. While when the polar, protic and strong coordinating component n-BuOH, which aids Cu(II) to cleave the C-Pd σ-bonds and solvate Pd(II), Cu(II) cations, halo anion, σ-butadienyl-Pd intermediate, etc., was increased to a certain extent in the binary solvent system, the reaction proceeded readily via a n-BuOH-promoted mechanism to give (3Z,5Z)-2,2,7,7-tetramethyl-3,6-dichloro-3,5-octadiene or (3Z,5Z)-2,2,7,7-tetramethyl-3,6-dibromo-3,5-octadiene, respectively. Possible weak hydrogen bonds and n-π weak force between n-BuOH (electron pair donor (EPD)) and tert-butyl acetylene (and σ-butadienyl-Pd intermediate, electron pair acceptor (EPA)) in the latter process were also in favor of the n-BuOH promoted pathway. Meanwhile, the coupling product 2,2,7,7-tetramethyl-3,5-octadiyne was exclusively obtained when the reaction was conducted in singular polar H2O. Influences of the solvent, catalysts, as well as possible mechanism were discussed in this paper. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Novel solvent-controlled chemoselective palladium/copper(II) halide catalyzed oligomerization of tert-butyl acetylene

Loading next page...
 
/lp/springer_journal/novel-solvent-controlled-chemoselective-palladium-copper-ii-halide-VSyhKarbbi
Publisher
Brill Academic Publishers
Copyright
Copyright © 2007 by VSP
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856707781749955
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial