Novel Properties of a Mouse γ-Aminobutyric Acid Transporter (GAT4)

Novel Properties of a Mouse γ-Aminobutyric Acid Transporter (GAT4) We expressed the mouse γ-aminobutyric acid (GABA) transporter GAT4 (homologous to rat/human GAT-3) in Xenopus laevis oocytes and examined its functional and pharmacological properties by using electrophysiological and tracer uptake methods. In the coupled mode of transport (Na+/Cl−/GABA cotransport), there was tight coupling between charge flux and GABA flux across the plasma membrane (2 charges/GABA). Transport was highly temperature-dependent with a temperature coefficient (Q 10) of 4.3. The GAT4 turnover rate (1.5 s−1; −50 mV, 21°C) and temperature dependence suggest physiological turnover rates of 15–20 s−1. No uncoupled current was observed in the presence of Na+. In the absence of external Na+, GAT4 exhibited two distinct uncoupled currents. (i) A Cl− leak current ( $ I_{{\rm leak}}^{{\rm Cl}} $ ) was observed when Na+ was replaced with choline or tetraethylammonium. The reversal potential of ( $I_{{\rm leak}}^{{\rm Cl}} $ ) followed the Cl− Nernst potential. (ii) A Li+ leak current ( $I_{{\rm leak}}^{{\rm{Li}}} $ ) was observed when Na+ was replaced with Li+. Both leak currents were inhibited by Na+, and both were temperature-independent (Q 10 ≈ 1). The two leak modes appeared not to coexist, as Li+ inhibited ( $I_{{\rm leak}}^{{\rm Cl}} $ ). The results suggest the existence of cation- and anion-selective channel-like pathways in GAT4. Flufenamic acid inhibited GAT4 Na+/C1−/GABA cotransport, $I_{{\rm leak}}^{{\rm{Li}}}$ , and $I_{{\rm leak}}^{{\rm Cl}}$ , (K i ≈ 30 μM), and the voltage-induced presteady-state charge movements (K i ≈ 440 μM). Flufenamic acid exhibited little or no selectivity for GAT1, GAT2, or GAT3. Sodium and GABA concentration jumps revealed that slow Na+ binding to the transporter is followed by rapid GABA-induced translocation of the ligands across the plasma membrane. Thus, Na+ binding and associated conformational changes constitute the rate-limiting steps in the transport cycle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Novel Properties of a Mouse γ-Aminobutyric Acid Transporter (GAT4)

Loading next page...
 
/lp/springer_journal/novel-properties-of-a-mouse-aminobutyric-acid-transporter-gat4-h1aQA0tMm9
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-004-0732-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial