Novel Multi-cell Precoding Schemes for TDD Massive MIMO Systems

Novel Multi-cell Precoding Schemes for TDD Massive MIMO Systems Two novel multi-cell precoding schemes, maximum ratio combining precoding with base station cooperation (MRC-BSC) and zero forcing precoding with BS cooperation (ZF-BSC), are proposed for time division duplex massive multiple-input multiple-output system. By making full use of other cells (not target cell) channel estimate information and changing the matrix structure of classical single-cell maximum ratio combining (MRC) precoding and zero forcing (ZF) precoding, proposed precoding schemes are obtained to reduce inter-cell interference with low complexity. The expressions of lower bound per-user achievable rate of proposed precoding schemes for different uplink pilot reuse factors situations are derived through theoretic analysis. Simulation results demonstrate that the proposed MRC-BSC and ZF-BSC can always achieve higher rates than single-cell MRC precoding and ZF precoding. For each precoding scheme, the downlink achievable rate can be improved greatly when enlarging the uplink pilot reuse factor. In addition, the proposed precoding schemes does not affect (or even improve) other cells’ performance while improving the target cell’s performance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Novel Multi-cell Precoding Schemes for TDD Massive MIMO Systems

Loading next page...
 
/lp/springer_journal/novel-multi-cell-precoding-schemes-for-tdd-massive-mimo-systems-ifcYjx0a0E
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4829-4
Publisher site
See Article on Publisher Site

Abstract

Two novel multi-cell precoding schemes, maximum ratio combining precoding with base station cooperation (MRC-BSC) and zero forcing precoding with BS cooperation (ZF-BSC), are proposed for time division duplex massive multiple-input multiple-output system. By making full use of other cells (not target cell) channel estimate information and changing the matrix structure of classical single-cell maximum ratio combining (MRC) precoding and zero forcing (ZF) precoding, proposed precoding schemes are obtained to reduce inter-cell interference with low complexity. The expressions of lower bound per-user achievable rate of proposed precoding schemes for different uplink pilot reuse factors situations are derived through theoretic analysis. Simulation results demonstrate that the proposed MRC-BSC and ZF-BSC can always achieve higher rates than single-cell MRC precoding and ZF precoding. For each precoding scheme, the downlink achievable rate can be improved greatly when enlarging the uplink pilot reuse factor. In addition, the proposed precoding schemes does not affect (or even improve) other cells’ performance while improving the target cell’s performance.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off