Novel Metamaterial Compact Planar MIMO Antenna Systems with Improved Isolation for WLAN Application

Novel Metamaterial Compact Planar MIMO Antenna Systems with Improved Isolation for WLAN Application In this paper, two element multiple input–multiple output (MIMO) meander line antenna systems with improved isolation performance and compact size are proposed and fabricated in WLAN frequency band. To increase isolation among antenna elements, a novel metamaterial spiral S-shaped resonator is embedded between two radiating elements. The proposed resonator has planar configuration and miniaturized size and is capable of blocking electromagnetic propagation between antenna elements by exhibiting negative effective permeability in the desired frequency band. To illustrate and evaluate the design process, two design samples are fabricated and tested in WLAN frequency band and the agreement among measurement and simulation results approves the design method. In the frequency range of 2.38–2.48 GHz, some MIMO communication system requirements like total active reflection coefficient, envelope correlation coefficient and capacity loss are tested on design samples which show satisfactory results, so this method can be employed in designing array antennas for small mobile communication systems. The designed MIMO antenna systems separated by 13.8 mm (less than λ/9), has better than − 40 dB isolation coefficient and near zero correlation coefficient and capacity loss at the operating frequency (2.4 GHz). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Novel Metamaterial Compact Planar MIMO Antenna Systems with Improved Isolation for WLAN Application

Loading next page...
1
 
/lp/springer_journal/novel-metamaterial-compact-planar-mimo-antenna-systems-with-improved-kpgkQTa6Sw
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-018-5848-5
Publisher site
See Article on Publisher Site

Abstract

In this paper, two element multiple input–multiple output (MIMO) meander line antenna systems with improved isolation performance and compact size are proposed and fabricated in WLAN frequency band. To increase isolation among antenna elements, a novel metamaterial spiral S-shaped resonator is embedded between two radiating elements. The proposed resonator has planar configuration and miniaturized size and is capable of blocking electromagnetic propagation between antenna elements by exhibiting negative effective permeability in the desired frequency band. To illustrate and evaluate the design process, two design samples are fabricated and tested in WLAN frequency band and the agreement among measurement and simulation results approves the design method. In the frequency range of 2.38–2.48 GHz, some MIMO communication system requirements like total active reflection coefficient, envelope correlation coefficient and capacity loss are tested on design samples which show satisfactory results, so this method can be employed in designing array antennas for small mobile communication systems. The designed MIMO antenna systems separated by 13.8 mm (less than λ/9), has better than − 40 dB isolation coefficient and near zero correlation coefficient and capacity loss at the operating frequency (2.4 GHz).

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off