Novel marker for recombination in the 3′-untranslated region of members of the species Human enterovirus A

Novel marker for recombination in the 3′-untranslated region of members of the species Human... Human enterovirus A (HEV-A) is a species in the genus Enterovirus . Viruses belonging to this species are often responsible for hand, foot and mouth disease and associated acute neurological disease. Studies of the 3′ untranslated region (UTR) of human enterovirus 71 (HEV71) revealed a possible role in virus replication. We compared the 3′-UTRs of all members of HEV-A and confirmed the presence of a secondary structure comprising three stem-loop domains (SLDs). SLD-Z is situated closest to the stop codon and has been shown previously to affect plaque morphology. The prototype strains of coxsackieviruses A4 (CVA4), CVA14, and CVA16 carried the longer group I SLD-Z, whilst other CVAs and HEV71 carried the shorter group II SLD-Z. We demonstrate the importance of SLD-Z as a marker for the emergence of newer strains of HEV71 and CVA16 through inter-typic recombination and propose that SLD-Z is a novel evolutionary marker for recombination in HEV-A. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Novel marker for recombination in the 3′-untranslated region of members of the species Human enterovirus A

Loading next page...
 
/lp/springer_journal/novel-marker-for-recombination-in-the-3-untranslated-region-of-members-xk0gdxwZkX
Publisher
Springer Vienna
Copyright
Copyright © 2013 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-012-1533-2
Publisher site
See Article on Publisher Site

Abstract

Human enterovirus A (HEV-A) is a species in the genus Enterovirus . Viruses belonging to this species are often responsible for hand, foot and mouth disease and associated acute neurological disease. Studies of the 3′ untranslated region (UTR) of human enterovirus 71 (HEV71) revealed a possible role in virus replication. We compared the 3′-UTRs of all members of HEV-A and confirmed the presence of a secondary structure comprising three stem-loop domains (SLDs). SLD-Z is situated closest to the stop codon and has been shown previously to affect plaque morphology. The prototype strains of coxsackieviruses A4 (CVA4), CVA14, and CVA16 carried the longer group I SLD-Z, whilst other CVAs and HEV71 carried the shorter group II SLD-Z. We demonstrate the importance of SLD-Z as a marker for the emergence of newer strains of HEV71 and CVA16 through inter-typic recombination and propose that SLD-Z is a novel evolutionary marker for recombination in HEV-A.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off