Novel biocide multifunctional materials based on mesoporous silicas modified by treatment with guanidine polymers or mercaptopropyltrimethoxysilane: synthesis, characterization, and applications

Novel biocide multifunctional materials based on mesoporous silicas modified by treatment with... Mesoporous thiol and guanidine-modified silicas with narrow pore size distribution have been prepared by the sol–gel technique. The surface area of the silicas was modified by treatment with 3-mercaptopropyltrimethoxysilane (MPTMS) and the guanidine polymers polyacrylate guanidine (PAG) and polymethacrylate guanidine (PMAG). The mesoporous silicas were characterized by nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy, and laser diffraction. The materials obtained were used as adsorbents for removing heavy metal ions (Cu2+) from water. It was found that modification of the silica surface by treatment with MPTMS and guanidine polymers provides new sorbents with high adsorption capacity compared with unmodified silica. The equilibrium adsorption capacity for Cu2+ ions on the surface of silicas modified by PAG and PMAG was 65 and 99.8 mg/g, respectively. Moreover, the modified silicas were tested for antimicrobial activity, in vitro, against the Gram-positive prokaryote Staphylococcus aureus and the Gram-negative prokaryote Escherichia coli. The results showed that only silica modified with guanidine polymers had high antimicrobial activity. To summarize, silica modified by treatment with guanidine polymers is more effective than thiol-modified silica for removing heavy metal ions from aqueous solution and can also be used as a biocide for surface sterilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Novel biocide multifunctional materials based on mesoporous silicas modified by treatment with guanidine polymers or mercaptopropyltrimethoxysilane: synthesis, characterization, and applications

Loading next page...
 
/lp/springer_journal/novel-biocide-multifunctional-materials-based-on-mesoporous-silicas-0sxbH2uL08
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1358-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial