Novel Biochemical Pathways for 5-Fluorouracil in Managing Experimental Hepatocellular Carcinoma in Rats

Novel Biochemical Pathways for 5-Fluorouracil in Managing Experimental Hepatocellular Carcinoma... Five fluorouracil (5-FU) is extensively used in the treatment of hepatocellular carcinoma (HCC). It is well documented that 5-FU and its metabolites inhibit DNA synthesis through inhibition of thymidylate synthetase. Little is known about additional pathways for 5-FU in managing HCC. The present experiment was mainly designed to study possible biochemical pathways that can be added to 5-FU’s mechanisms of action. Four groups of rats constituted a control group (given saline only), a trichloroacetic acid group (TCA, 0.5 g/kg/day for 5 days, orally), a 5-FU-positive group (75 mg/kg body weight, intraperitoneally, once weekly for 3 weeks) and a TCA-treated with 5-FU group (24 h from last TCA dose). We executed both biochemical—serum alpha-fetoprotein (AFP), liver tissue contents of total glycosaminoglycan (TGAGs), collagen (represented as hydroxyproline), total sialic acid (TSA), free glucosamine (FGA) and proteolytic enzyme activity (as pepsin and free cathepsin-D—and histological examinations of the liver tissue. The results revealed histological changes such as central vein congestion and irregularly shaped, substantially enlarged, vesiculated and binucleated hepatocytes. The nuclei were mostly polymorphic and hyperchromatic, and several vacuolation was noticed in the cytoplasm encircling the nucleus with masses of acidophilic material. 5-FU greatly corrected these changes, except that some necrotic and cytotoxic effects of 5-FU were still shown. AFP was significantly elevated in TCA-intoxicated, but reversed in 5-FU-treated, groups. Increased proteolytic activity by TCA was reversed by 5-FU, which also restored TGAG contents to normal; but both TCA and 5-FU depleted collagen content. TCA significantly elevated FGA but depressed TSA; this action was reversed by 5-FU treatment. In conclusion, it is possible that proteolytic activity, expressed as upregulated pepsin and free cathepsin-D activities, is increased in HCC. This is accompanied by extracellular matrix macromolecular disturbance, manifested as decreased TGAGs, collagen and TSA, with marked increase in FGA liver tissue content. The elevated FGA with depressed TSA content of liver tissue may be attributed to a cancer-hampered N-acetylation of FGA into SA. 5-FU administration markedly depressed hepatic tissue proteolysis, possibly reactivated N-acetylation of FGA into SA and elevated TGAGs without stopping tissue fibrosis as collagen was not affected. This study explores additional pathways for the mechanism of action of 5-FU, through conservation of extracellular matrix composition in situ, inhibiting invasion and metastasis in addition to its DNA-disturbing pathway. The Journal of Membrane Biology Springer Journals

Novel Biochemical Pathways for 5-Fluorouracil in Managing Experimental Hepatocellular Carcinoma in Rats

Loading next page...
Copyright © 2010 by Springer Science+Business Media, LLC
Life Sciences; Human Physiology ; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial