Normalized cDNA libraries from a porcine model of orthopedic implant-associated infection

Normalized cDNA libraries from a porcine model of orthopedic implant-associated infection Staphylococcal infections that result from an alteration in a patient's immune response at the surgical site are a major problem in procedures that incorporate biomaterials in trauma surgery and joint replacement. Diagnosis of infection based on pathogen detection is difficult and exacerbated by increasing numbers of partially or totally resistant strains of nosocomial pathogens, particularly Staphylococcus aureus. Expression profiling of a host's cellular immune response could facilitate the identification of the pathways involved in pathogen recognition and eradication and could lead to more rational design of drugs and therapies. To this end, we constructed and characterized ten individually tagged and directionally cloned cDNA libraries from peripheral blood cells (PBC), spleen (Sp), thymus (Th), lymph node (LN), and bone marrow (BM) from immunologically naive and challenged pigs as part of an implant-associated orthopedic model of deep infection. Three of these libraries were normalized at C 0 t values 5, 10, 20, and 30. The libraries comprise more than 20 million primary transformants with an average insert length >1.4 kb. Cluster analysis of 7620 ESTs revealed 1029 clusters containing an average of 3.6 sequences and 3846 singletons. Gene discovery is estimated to be ∼64%. Searches of public databases resulted in 49.3% annotated porcine sequences, of which 22.2% had significant homologies to ESTs from a variety of species, and 28.5% were without a significant match in any public database. We also identified 9.1% ESTs as involved in host cell and organism defense and 11.5% related to cell signaling and communication. These sequences, together with the 28.5% appearing as novel, are of specific interest to the infectious disease process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Normalized cDNA libraries from a porcine model of orthopedic implant-associated infection

Loading next page...
 
/lp/springer_journal/normalized-cdna-libraries-from-a-porcine-model-of-orthopedic-implant-yUi350U0xO
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Anatomy; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-001-2120-0
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial