Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in non-resonance case with perturbations

Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in... For the study of nonlinear stability of a dynamical system, normalized Hamiltonian of the system is very important to discuss the dynamics in the vicinity of invariant objects. In general, it represents a nonlinear approximation to the dynamics, which is very helpful to obtain the information as regards a realistic solution of the problem. In the present study, normalization of the Hamiltonian and analysis of nonlinear stability in non-resonance case, in the Chermnykh-like problem under the influence of perturbations in the form of radiation pressure, oblateness, and a disc is performed. To describe nonlinear stability, initially, quadratic part of the Hamiltonian is normalized in the neighborhood of triangular equilibrium point and then higher order normalization is performed by computing the fourth order normalized Hamiltonian with the help of Lie transforms. In non-resonance case, nonlinear stability of the system is discussed using the Arnold–Moser theorem. Again, the effects of radiation pressure, oblateness and the presence of the disc are analyzed separately and it is observed that in the absence as well as presence of perturbation parameters, triangular equilibrium point is unstable in the nonlinear sense within the stability range 0 < μ < μ 1 = μ c ¯ $0<\mu<\mu_{1}=\bar{\mu_{c}}$ due to failure of the Arnold–Moser theorem. However, perturbation parameters affect the values of μ $\mu$ at which D 4 = 0 $D_{4}=0$ , significantly. This study may help to analyze more generalized cases of the problem in the presence of some other types of perturbations such as P-R drag and solar wind drag. The results are limited to the regular symmetric disc but it can be extended in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Astrophysics and Space Science Springer Journals

Normalization of Hamiltonian and nonlinear stability of the triangular equilibrium points in non-resonance case with perturbations

Loading next page...
 
/lp/springer_journal/normalization-of-hamiltonian-and-nonlinear-stability-of-the-triangular-Ww5Hs3LZbs
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Physics; Astrophysics and Astroparticles; Astronomy, Observations and Techniques; Cosmology; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics) ; Astrobiology
ISSN
0004-640X
eISSN
1572-946X
D.O.I.
10.1007/s10509-017-3132-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial