Nonrobustness Property of the Individual Ergodic Theorem

Nonrobustness Property of the Individual Ergodic Theorem Main laws of probability theory, when applied to individual sequences, have a “robustness” property under small violations of randomness. For example, the law of large numbers for the symmetric Bernoulli scheme holds for a sequence where the randomness deficiency of its initial fragment of length n grows as o(n). The law of iterated logarithm holds if the randomness deficiency grows as o(log log n). We prove that Birkhoff's individual ergodic theorem is nonrobust in this sense. If the randomness deficiency grows arbitrarily slowly on initial fragments of an infinite sequence, this theorem can be violated. An analogous nonrobustness property holds for the Shannon–McMillan–Breiman theorem. Problems of Information Transmission Springer Journals

Nonrobustness Property of the Individual Ergodic Theorem

Loading next page...
Kluwer Academic Publishers-Plenum Publishers
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial