Nonrandom segregation during meiosis: the unfairness of females

Nonrandom segregation during meiosis: the unfairness of females Most geneticists assume that chromosome segregation during meiosis is Mendelian (i.e., each allele at each locus is represented equally in the gametes). The great majority of reports that discuss non-Mendelian transmission have focused on systems of gametic selection, such as the mouse t-haplotype and Segregation distorter in Drosophila, or on systems in which post-fertilization selection takes place. Because the segregation of chromosomes in such systems is Mendelian and unequal representation of alleles among offspring is achieved through gamete dysfunction or embryonic death, there is a common perception that true disturbances in the randomness of chromosome segregation are rare and of limited biological significance. In this review we summarize data on nonrandom segregation in a wide variety of genetic systems. Despite apparent differences between some systems, the basic requirements for nonrandom segregation can be deduced from their shared characteristics: i) asymmetrical meiotic division(s); ii) functional asymmetry of the meiotic spindle poles; and iii) functional heterozygosity at a locus that mediates attachment of a chromosome to the spindle. The frequency with which all three of these requirements are fulfilled in natural populations is unknown, but our analyses indicate that nonrandom segregation occurs with sufficient frequency during female meiosis, and in exceptional cases of male meiosis, that it has important biological, clinical, and evolutionary consequences. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Nonrandom segregation during meiosis: the unfairness of females

Loading next page...
 
/lp/springer_journal/nonrandom-segregation-during-meiosis-the-unfairness-of-females-XwkFaAUsAC
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350040003
Publisher site
See Article on Publisher Site

Abstract

Most geneticists assume that chromosome segregation during meiosis is Mendelian (i.e., each allele at each locus is represented equally in the gametes). The great majority of reports that discuss non-Mendelian transmission have focused on systems of gametic selection, such as the mouse t-haplotype and Segregation distorter in Drosophila, or on systems in which post-fertilization selection takes place. Because the segregation of chromosomes in such systems is Mendelian and unequal representation of alleles among offspring is achieved through gamete dysfunction or embryonic death, there is a common perception that true disturbances in the randomness of chromosome segregation are rare and of limited biological significance. In this review we summarize data on nonrandom segregation in a wide variety of genetic systems. Despite apparent differences between some systems, the basic requirements for nonrandom segregation can be deduced from their shared characteristics: i) asymmetrical meiotic division(s); ii) functional asymmetry of the meiotic spindle poles; and iii) functional heterozygosity at a locus that mediates attachment of a chromosome to the spindle. The frequency with which all three of these requirements are fulfilled in natural populations is unknown, but our analyses indicate that nonrandom segregation occurs with sufficient frequency during female meiosis, and in exceptional cases of male meiosis, that it has important biological, clinical, and evolutionary consequences.

Journal

Mammalian GenomeSpringer Journals

Published: May 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off