Nonparametric uncertainty representation method with different insufficient data from two sources

Nonparametric uncertainty representation method with different insufficient data from two sources The uncertainty information of design variables is included in the available representation data, and there are differences among representation data from different sources. Therefore, the paper proposes a nonparametric uncertainty representation method of design variables with different insufficient data from two sources. The Gaussian interpolation model for sparse sampling points and/or sparse sampling intervals from a single source is constructed through maximizing the logarithmic likelihood estimation function of insufficient data. The weight ratios of probability density values at sampling points are optimized through minimizing the total deviation of the fusion model, and the fusion Gaussian model is constructed based on the weight sum of the optimum probability density values of sampling points for Source 1 and Source 2. The methodology is extended to five different fusion conditions, which contain the fusion of uncertain distribution parameters, the fusion of insufficient data and interval data, etc. Five application examples are illustrated to verify the effectiveness of the proposed methodology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural and Multidisciplinary Optimization Springer Journals

Nonparametric uncertainty representation method with different insufficient data from two sources

Loading next page...
 
/lp/springer_journal/nonparametric-uncertainty-representation-method-with-different-Sz4SKAbQPE
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Theoretical and Applied Mechanics; Computational Mathematics and Numerical Analysis; Engineering Design
ISSN
1615-147X
eISSN
1615-1488
D.O.I.
10.1007/s00158-018-2003-6
Publisher site
See Article on Publisher Site

Abstract

The uncertainty information of design variables is included in the available representation data, and there are differences among representation data from different sources. Therefore, the paper proposes a nonparametric uncertainty representation method of design variables with different insufficient data from two sources. The Gaussian interpolation model for sparse sampling points and/or sparse sampling intervals from a single source is constructed through maximizing the logarithmic likelihood estimation function of insufficient data. The weight ratios of probability density values at sampling points are optimized through minimizing the total deviation of the fusion model, and the fusion Gaussian model is constructed based on the weight sum of the optimum probability density values of sampling points for Source 1 and Source 2. The methodology is extended to five different fusion conditions, which contain the fusion of uncertain distribution parameters, the fusion of insufficient data and interval data, etc. Five application examples are illustrated to verify the effectiveness of the proposed methodology.

Journal

Structural and Multidisciplinary OptimizationSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off