Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum Computations

Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum... Entanglement of two parts of a quantum system is a nonlocal property unaffected by local manipulations of these parts. It can be described by quantities invariant under local unitary transformations. Here we present, for a system of two qubits, a set of invariants which provides a complete description of nonlocal properties. The set contains 18 real polynomials of the entries of the density matrix. We prove that one of two mixed states can be transformed into the other by single-qubit operations if and only if these states have equal values of all 18 invariants. Corresponding local operations can be found efficiently. Without any of these 18 invariants the set is incomplete. Similarly, nonlocal, entangling properties of two-qubit unitary gates are invariant under single-qubit operations. We present a complete set of 3 real polynomial invariants of unitary gates. Our results are useful for optimization of quantum computations since they provide an effective tool to verify if and how a given two-qubit operation can be performed using exactly one elementary two-qubit gate, implemented by a basic physical manipulation (and arbitrarily many single-qubit gates). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Nonlocal Properties of Two-Qubit Gates and Mixed States, and the Optimization of Quantum Computations

Loading next page...
 
/lp/springer_journal/nonlocal-properties-of-two-qubit-gates-and-mixed-states-and-the-BDk1ihc9aR
Publisher
Springer Journals
Copyright
Copyright © 2002 by Plenum Publishing Corporation
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1023/A:1022144002391
Publisher site
See Article on Publisher Site

Abstract

Entanglement of two parts of a quantum system is a nonlocal property unaffected by local manipulations of these parts. It can be described by quantities invariant under local unitary transformations. Here we present, for a system of two qubits, a set of invariants which provides a complete description of nonlocal properties. The set contains 18 real polynomials of the entries of the density matrix. We prove that one of two mixed states can be transformed into the other by single-qubit operations if and only if these states have equal values of all 18 invariants. Corresponding local operations can be found efficiently. Without any of these 18 invariants the set is incomplete. Similarly, nonlocal, entangling properties of two-qubit unitary gates are invariant under single-qubit operations. We present a complete set of 3 real polynomial invariants of unitary gates. Our results are useful for optimization of quantum computations since they provide an effective tool to verify if and how a given two-qubit operation can be performed using exactly one elementary two-qubit gate, implemented by a basic physical manipulation (and arbitrarily many single-qubit gates).

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off