Nonlinear systems synchronization for modeling two-phase microfluidics flows

Nonlinear systems synchronization for modeling two-phase microfluidics flows The aim of this work is to identify a class of models that can represent the two-phase microfluidic flow in different experimental conditions. The identification procedure adopted is based on the nonlinear systems synchronization theory. The experimental time series were assumed as the asymptotic behavior of a generic state variable of an unknown Master system, and this information was used to drive a second Slave system, with a known model and undefined parameters. To reach the convergence between the time evolutions of the two systems, so the flow identification, an error was evaluated and optimized by tuning the parameters of the Slave system, through genetic algorithm. The Chua’s oscillator has been chosen as a Slave model, and an optimal parameters set of Chua’s system was identified for each of the 18 experiments. As proof of concept on approach validity, the changes in the parameters set in the different experimental conditions were discussed taking into account the results of the nonlinear time series analysis. The results confirm the possibility with a single model to identify a variety of flow regimes generated in two-phase microfluidic processes, independently of how the processes have been generated, no directed relations with the input flow rate used are in the model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Dynamics Springer Journals

Nonlinear systems synchronization for modeling two-phase microfluidics flows

Loading next page...
 
/lp/springer_journal/nonlinear-systems-synchronization-for-modeling-two-phase-microfluidics-5D3xmveCA7
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
ISSN
0924-090X
eISSN
1573-269X
D.O.I.
10.1007/s11071-017-3819-0
Publisher site
See Article on Publisher Site

Abstract

The aim of this work is to identify a class of models that can represent the two-phase microfluidic flow in different experimental conditions. The identification procedure adopted is based on the nonlinear systems synchronization theory. The experimental time series were assumed as the asymptotic behavior of a generic state variable of an unknown Master system, and this information was used to drive a second Slave system, with a known model and undefined parameters. To reach the convergence between the time evolutions of the two systems, so the flow identification, an error was evaluated and optimized by tuning the parameters of the Slave system, through genetic algorithm. The Chua’s oscillator has been chosen as a Slave model, and an optimal parameters set of Chua’s system was identified for each of the 18 experiments. As proof of concept on approach validity, the changes in the parameters set in the different experimental conditions were discussed taking into account the results of the nonlinear time series analysis. The results confirm the possibility with a single model to identify a variety of flow regimes generated in two-phase microfluidic processes, independently of how the processes have been generated, no directed relations with the input flow rate used are in the model.

Journal

Nonlinear DynamicsSpringer Journals

Published: Sep 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off