Nonlinear Surface Waves in a Basin with Floating Broken Ice

Nonlinear Surface Waves in a Basin with Floating Broken Ice The method of multiple scales is used to deduce equations for three nonlinear approximations of a wave disturbance in a basin of constant depth covered with broken ice. In deducing these equations, we take into account the space and time variability of the wave profile in the expression for the velocity potential on the basin surface. These equations are used to construct uniformly suitable asymptotic expansions up to quantities of the third order of smallness for the liquid-velocity potential and elevations of the basin surface formed by a periodic running wave of finite amplitude. We analyze the dependence of the amplitude-phase characteristics of elevations of the basin surface on the thickness of ice, nonlinearity of its vertical acceleration, and the amplitude and wavelength of the fundamental harmonic. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Nonlinear Surface Waves in a Basin with Floating Broken Ice

Loading next page...
 
/lp/springer_journal/nonlinear-surface-waves-in-a-basin-with-floating-broken-ice-bJ2p45Nd4X
Publisher
Springer Journals
Copyright
Copyright © 2002 by Plenum Publishing Corporation
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1023/A:1021514926035
Publisher site
See Article on Publisher Site

Abstract

The method of multiple scales is used to deduce equations for three nonlinear approximations of a wave disturbance in a basin of constant depth covered with broken ice. In deducing these equations, we take into account the space and time variability of the wave profile in the expression for the velocity potential on the basin surface. These equations are used to construct uniformly suitable asymptotic expansions up to quantities of the third order of smallness for the liquid-velocity potential and elevations of the basin surface formed by a periodic running wave of finite amplitude. We analyze the dependence of the amplitude-phase characteristics of elevations of the basin surface on the thickness of ice, nonlinearity of its vertical acceleration, and the amplitude and wavelength of the fundamental harmonic.

Journal

Physical OceanographySpringer Journals

Published: Oct 21, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off