Nonlinear Shape-Manifold Learning Approach: Concepts, Tools and Applications

Nonlinear Shape-Manifold Learning Approach: Concepts, Tools and Applications In this paper, we present the concept of a “shape manifold” designed for reduced order representation of complex “shapes” encountered in mechanical problems, such as design optimization, springback or image correlation. The overall idea is to define the shape space within which evolves the boundary of the structure. The reduced representation is obtained by means of determining the intrinsic dimensionality of the problem, independently of the original design parameters, and by approximating a hyper surface, i.e. a shape manifold, connecting all admissible shapes represented using level set functions. Also, an optimal parameterization may be obtained for arbitrary shapes, where the parameters have to be defined a posteriori. We also developed the predictor-corrector optimization manifold walking algorithms in a reduced shape space that guarantee the admissibility of the solution with no additional constraints. We illustrate the approach on three diverse examples drawn from the field of computational and applied mechanics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Computational Methods in Engineering Springer Journals

Nonlinear Shape-Manifold Learning Approach: Concepts, Tools and Applications

Loading next page...
 
/lp/springer_journal/nonlinear-shape-manifold-learning-approach-concepts-tools-and-GoI0jjeQAy
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by CIMNE, Barcelona, Spain
Subject
Engineering; Mathematical and Computational Engineering
ISSN
1134-3060
eISSN
1886-1784
D.O.I.
10.1007/s11831-016-9189-9
Publisher site
See Article on Publisher Site

Abstract

In this paper, we present the concept of a “shape manifold” designed for reduced order representation of complex “shapes” encountered in mechanical problems, such as design optimization, springback or image correlation. The overall idea is to define the shape space within which evolves the boundary of the structure. The reduced representation is obtained by means of determining the intrinsic dimensionality of the problem, independently of the original design parameters, and by approximating a hyper surface, i.e. a shape manifold, connecting all admissible shapes represented using level set functions. Also, an optimal parameterization may be obtained for arbitrary shapes, where the parameters have to be defined a posteriori. We also developed the predictor-corrector optimization manifold walking algorithms in a reduced shape space that guarantee the admissibility of the solution with no additional constraints. We illustrate the approach on three diverse examples drawn from the field of computational and applied mechanics.

Journal

Archives of Computational Methods in EngineeringSpringer Journals

Published: Sep 8, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off