Nonlinear dynamic modeling for fault ride-through capability of DFIG-based wind farm

Nonlinear dynamic modeling for fault ride-through capability of DFIG-based wind farm Fault ride-through (FRT) is a control model enhanced to protect doubly fed induction generator (DFIG) during voltage dip occurring in grid. In this study, stator and rotor circuit dynamic modeling enhanced in terms of simulation performance and fast system responses during instability in DFIG-based wind farm, besides, a FRT capability strategy were enhanced for nonlinear supercapacitor modeling in DFIG-based wind farm. The transient stability analyses of the DFIG with and without supercapacitor as well as positive–negative-sequence dynamic modeling (PNSDM) were compared for three phases, two phases, two-phase-ground and a-phase-ground faults. Furthermore, variations such as DFIG output voltage, DFIG angular speed, DFIG electrical torque and DFIG d–q axis stator current variations were also evaluated. It was found that the DFIG-based wind farm became stable within a short time using the PNSDM and supercapacitor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Dynamics Springer Journals

Nonlinear dynamic modeling for fault ride-through capability of DFIG-based wind farm

Loading next page...
 
/lp/springer_journal/nonlinear-dynamic-modeling-for-fault-ride-through-capability-of-dfig-XgROmAKRfL
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
ISSN
0924-090X
eISSN
1573-269X
D.O.I.
10.1007/s11071-017-3617-8
Publisher site
See Article on Publisher Site

Abstract

Fault ride-through (FRT) is a control model enhanced to protect doubly fed induction generator (DFIG) during voltage dip occurring in grid. In this study, stator and rotor circuit dynamic modeling enhanced in terms of simulation performance and fast system responses during instability in DFIG-based wind farm, besides, a FRT capability strategy were enhanced for nonlinear supercapacitor modeling in DFIG-based wind farm. The transient stability analyses of the DFIG with and without supercapacitor as well as positive–negative-sequence dynamic modeling (PNSDM) were compared for three phases, two phases, two-phase-ground and a-phase-ground faults. Furthermore, variations such as DFIG output voltage, DFIG angular speed, DFIG electrical torque and DFIG d–q axis stator current variations were also evaluated. It was found that the DFIG-based wind farm became stable within a short time using the PNSDM and supercapacitor.

Journal

Nonlinear DynamicsSpringer Journals

Published: Jun 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off