Nonlinear biotic ligand model for assessing alleviation effects of Ca, Mg, and K on Cd toxicity to soybean roots

Nonlinear biotic ligand model for assessing alleviation effects of Ca, Mg, and K on Cd toxicity... Developing a nonlinear biotic ligand model (BLM) that considers the geometrical constraints for binding of different cations on biotic ligands will provide more reliable details about the hypothetical mechanism governing the alleviation of cadmium (Cd) toxicity by coexistent cations. Soybean seedlings under Cd stress produced by various activities of coexistent cations such as calcium (Ca2+), magnesium (Mg2+), and potassium (K+) were hydroponically assayed for Cd toxicity to soybean roots. The Cd2+ activity resulting in 50% reduction of root elongation (RE), EA 50, was used for assessing the Cd toxicity to the soybean seedling. Increasing Ca2+, Mg2+, and K+ activities resulted in a significant alleviation of Cd toxicity to soybean roots. This alleviation was markedly higher with increasing Ca2+ and K+ levels than with increasing Mg2+ level. In addition, EA 50 increased in nonlinear positive relationships with Ca2+ and Mg2+. The real data obtained from the soybean assay were thus used to develop the nonlinear BLM for Cd rhizotoxicity. Two parameters, competition equivalent and stability constant, indicated the profiles of the geometrical constraint and affinity of Ca2+, Mg2+, and K+ binding on the soybean root surface to alleviate Cd toxicity. Compared with the traditional linear BLM, the nonlinear BLM provided more precise predictions of relative root elongation (RRE) and EA 50. Therefore, adopting the nonlinear BLM approach will successfully improve the monitoring and assessment of heavy metal toxicity to terrestrial plants. Ecotoxicology Springer Journals

Nonlinear biotic ligand model for assessing alleviation effects of Ca, Mg, and K on Cd toxicity to soybean roots

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media, LLC
Environment; Environment, general; Ecotoxicology; Ecology; Environmental Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial