Nonintrusive pressure measurement in microfluidic systems via backscattering interferometry

Nonintrusive pressure measurement in microfluidic systems via backscattering interferometry Measurement of pressure in microfluidic systems typically requires intrusion into the channel, rendering direct pressure and fluid flow rate measurements impractical outside of a laboratory environment. A nonintrusive measurement technique has been successfully developed to measure fluid pressure in both gas and liquids in microchannels. The technique, which consists of an unfocused laser beam impinging a microchannel to generate interferometric fringes, contains information on both channel wall deflection and changes in refractive index of the liquid or gas. The effects can be isolated through interpretation of fringe shift and changes in fringe morphology. Using finite element analysis to determine microchannel wall deflection in conjunction with refractive index data enables accurate quantification of pressures in microchannels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Nonintrusive pressure measurement in microfluidic systems via backscattering interferometry

Loading next page...
 
/lp/springer_journal/nonintrusive-pressure-measurement-in-microfluidic-systems-via-oPXagJoIX3
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1754-0
Publisher site
See Article on Publisher Site

Abstract

Measurement of pressure in microfluidic systems typically requires intrusion into the channel, rendering direct pressure and fluid flow rate measurements impractical outside of a laboratory environment. A nonintrusive measurement technique has been successfully developed to measure fluid pressure in both gas and liquids in microchannels. The technique, which consists of an unfocused laser beam impinging a microchannel to generate interferometric fringes, contains information on both channel wall deflection and changes in refractive index of the liquid or gas. The effects can be isolated through interpretation of fringe shift and changes in fringe morphology. Using finite element analysis to determine microchannel wall deflection in conjunction with refractive index data enables accurate quantification of pressures in microchannels.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 11, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off