Non-smooth dynamics for an efficient simulation of the grand piano action

Non-smooth dynamics for an efficient simulation of the grand piano action Models with impact or dry friction, yielding discontinuous velocities or accelerations, have motivated research for appropriate numerical methods in the community of non-smooth dynamics. In this work, we apply such methods on the grand piano action. This multibody system has two properties of interest in terms of modelling and simulation: it is extremely sensitive to small misadjustments, and its functioning strongly relies on dry friction and stick–slip transitions—known to be crucial for the touch of the pianist. Using numerical methods of non-smooth contact dynamics, the non-smooth character of dry friction was conserved, in contrast to classical approaches based on regularization which additionally impose the somewhat arbitrary choice of a regularizing parameter. The use of such numerical method resulted in computations about a few hundred times faster than those reported in recent literature. For the first time, the presented predictions of the piano action’s simulations are forces (in particular, the reaction force of the key on the pianist’s finger), instead of displacements which filter out most of the dynamical subtleties of the mechanism. The comparisons between measured and simulated forces in response to a given motion are successful, which constitutes an excellent validation of the model, from the dynamical and the haptic points of view. Altogether, numerical methods for non-smooth contact dynamics applied to a non-smooth model of the piano action proved to be both accurate and efficient, opening doors to industrial and haptic applications of sensitive multibody systems for which dry friction is essential. Meccanica Springer Journals

Non-smooth dynamics for an efficient simulation of the grand piano action

Loading next page...
Springer Netherlands
Copyright © 2017 by Springer Science+Business Media Dordrecht
Physics; Classical Mechanics; Civil Engineering; Automotive Engineering; Mechanical Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial