Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis

Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed... Heat-shock proteins (HSPs) are a group of evolutionarily conserved polypeptides whose expression is induced in all organisms in response to environmental stresses and during various developmental processes. In this work, we show that the rose (Rosa hybrida) cytoplasmic 17.5-kDa Class I small HSP (sHSP17.5-CI, accession number: BQ103946) increases dramatically during flower development, and accumulates in closed bud petals and leaves only in response to heat stress. mRNA for a putative ortholog of this protein is also found in petals, but not leaves, of Arabidopsis (Arabidopsis thaliana) plants grown under optimal conditions, and it accumulates in leaves in response to heat stress. Analysis of Arabidopsis T-DNA insertion lines affected at three homologous genes revealed that their acquired thermotolerance, as measured by hypocotyl-elongation assay, is impaired. The correlation between sHSP-CI accumulation and expansion of rose petal cells, impairment of acquired thermotolerance, and defects in early embryogenesis of the double mutants (hsp17.4/hsp17.6A), all suggest that sHSP-CI proteins play a role in protecting cell proteins at various developmental stages, whereas in hypocotyl elongation they have a non-redundant function in acquired thermotolerance but have a redundant function in early embryogenesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Non-redundant functions of sHSP-CIs in acquired thermotolerance and their role in early seed development in Arabidopsis

Loading next page...
 
/lp/springer_journal/non-redundant-functions-of-shsp-cis-in-acquired-thermotolerance-and-NH789eokvv
Publisher
Springer Journals
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9326-4
Publisher site
See Article on Publisher Site

Abstract

Heat-shock proteins (HSPs) are a group of evolutionarily conserved polypeptides whose expression is induced in all organisms in response to environmental stresses and during various developmental processes. In this work, we show that the rose (Rosa hybrida) cytoplasmic 17.5-kDa Class I small HSP (sHSP17.5-CI, accession number: BQ103946) increases dramatically during flower development, and accumulates in closed bud petals and leaves only in response to heat stress. mRNA for a putative ortholog of this protein is also found in petals, but not leaves, of Arabidopsis (Arabidopsis thaliana) plants grown under optimal conditions, and it accumulates in leaves in response to heat stress. Analysis of Arabidopsis T-DNA insertion lines affected at three homologous genes revealed that their acquired thermotolerance, as measured by hypocotyl-elongation assay, is impaired. The correlation between sHSP-CI accumulation and expansion of rose petal cells, impairment of acquired thermotolerance, and defects in early embryogenesis of the double mutants (hsp17.4/hsp17.6A), all suggest that sHSP-CI proteins play a role in protecting cell proteins at various developmental stages, whereas in hypocotyl elongation they have a non-redundant function in acquired thermotolerance but have a redundant function in early embryogenesis.

Journal

Plant Molecular BiologySpringer Journals

Published: Apr 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off