Non-photosynthetic `malic enzyme' from maize: a constituvely expressed enzyme that responds to plant defence inducers

Non-photosynthetic `malic enzyme' from maize: a constituvely expressed enzyme that responds to... The characterization of a non-photosynthetic isoform of NADP - malic enzyme (NADP-ME) from maize roots, which represents nearly 7% of the total soluble protein of this tissue, was performed. The molecular properties of the purified protein, as well as the kinetic parameters determined, indicate that the NADP-ME isoform present in maize roots differs from the photosynthetic enzyme implicated in the C4 cycle, but is similar, or identical, to the enzyme previously characterized from etiolated maize leaves (Maurino, Drincovich and Andreo, Biochem. Mol. Biol. Int. 38 (1996) 239-250). A full-length ORF encoding a plastidic NADP-ME (almost identical to the maize root NADP-ME, GenBank accession number U39958) was cloned from a root cDNA library as well as isolated by reverse transcription (RT)-PCR using green leaves mRNA as template. These results indicate that root NADP-ME does not constitute a root-specific isoform, but represents a protein with a constitutive pattern of expression in plastids of the C4 plant maize. The amount of NADP-ME measured by activity, western and northern blot was modified when different stress conditions (including treatments with cellulase, fungal elicitors, jasmonate and hypoxic treatment) were applied to maize roots, indicating that the enzyme from maize roots is under transcriptional or post-transcriptional regulation by effectors related to plant defence responses. It is deduced that the induction of housekeeping genes, like non-photosynthetic NADP-ME, whose constitutive role may be the provision of reductive power in non-photosynthetic plastids, is likely to accompany the defence response. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Non-photosynthetic `malic enzyme' from maize: a constituvely expressed enzyme that responds to plant defence inducers

Loading next page...
 
/lp/springer_journal/non-photosynthetic-malic-enzyme-from-maize-a-constituvely-expressed-J75XLiRySH
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1010665910095
Publisher site
See Article on Publisher Site

Abstract

The characterization of a non-photosynthetic isoform of NADP - malic enzyme (NADP-ME) from maize roots, which represents nearly 7% of the total soluble protein of this tissue, was performed. The molecular properties of the purified protein, as well as the kinetic parameters determined, indicate that the NADP-ME isoform present in maize roots differs from the photosynthetic enzyme implicated in the C4 cycle, but is similar, or identical, to the enzyme previously characterized from etiolated maize leaves (Maurino, Drincovich and Andreo, Biochem. Mol. Biol. Int. 38 (1996) 239-250). A full-length ORF encoding a plastidic NADP-ME (almost identical to the maize root NADP-ME, GenBank accession number U39958) was cloned from a root cDNA library as well as isolated by reverse transcription (RT)-PCR using green leaves mRNA as template. These results indicate that root NADP-ME does not constitute a root-specific isoform, but represents a protein with a constitutive pattern of expression in plastids of the C4 plant maize. The amount of NADP-ME measured by activity, western and northern blot was modified when different stress conditions (including treatments with cellulase, fungal elicitors, jasmonate and hypoxic treatment) were applied to maize roots, indicating that the enzyme from maize roots is under transcriptional or post-transcriptional regulation by effectors related to plant defence responses. It is deduced that the induction of housekeeping genes, like non-photosynthetic NADP-ME, whose constitutive role may be the provision of reductive power in non-photosynthetic plastids, is likely to accompany the defence response.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off