Non-parametric method for European option bounds

Non-parametric method for European option bounds There is much research whose efforts have been devoted to discovering the distributional defects in the Black–Scholes model, which are known to cause severe biases. However, with a free specification for the distribution, one can only find upper and lower bounds for option prices. In this paper, we derive a new non-parametric lower bound and provide an alternative interpretation of Ritchken’s (J Finance 40:1219–1233, 1985) upper bound to the price of the European option. In a series of numerical examples, our new lower bound is substantially tighter than previous lower bounds. This is prevalent especially for out of the money options where the previous lower bounds perform badly. Moreover, we present how our bounds can be derived from histograms which are completely non-parametric in an empirical study. We discover violations in our lower bound and show that those violations present arbitrage profits. In particular, our empirical results show that out of the money calls are substantially overpriced (violate the lower bound). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Non-parametric method for European option bounds

Loading next page...
 
/lp/springer_journal/non-parametric-method-for-european-option-bounds-SuvuABVoDP
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1007/s11156-011-0249-9
Publisher site
See Article on Publisher Site

Abstract

There is much research whose efforts have been devoted to discovering the distributional defects in the Black–Scholes model, which are known to cause severe biases. However, with a free specification for the distribution, one can only find upper and lower bounds for option prices. In this paper, we derive a new non-parametric lower bound and provide an alternative interpretation of Ritchken’s (J Finance 40:1219–1233, 1985) upper bound to the price of the European option. In a series of numerical examples, our new lower bound is substantially tighter than previous lower bounds. This is prevalent especially for out of the money options where the previous lower bounds perform badly. Moreover, we present how our bounds can be derived from histograms which are completely non-parametric in an empirical study. We discover violations in our lower bound and show that those violations present arbitrage profits. In particular, our empirical results show that out of the money calls are substantially overpriced (violate the lower bound).

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Aug 26, 2011

References

  • Bounds on contingent claims based on several assets
    Boyle, P; Lin, X

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off