Non-parametric maximum likelihood estimation of interval-censored failure time data subject to misclassification

Non-parametric maximum likelihood estimation of interval-censored failure time data subject to... The paper considers non-parametric maximum likelihood estimation of the failure time distribution for interval-censored data subject to misclassification. Such data can arise from two types of observation scheme; either where observations continue until the first positive test result or where tests continue regardless of the test results. In the former case, the misclassification probabilities must be known, whereas in the latter case, joint estimation of the event-time distribution and misclassification probabilities is possible. The regions for which the maximum likelihood estimate can only have support are derived. Algorithms for computing the maximum likelihood estimate are investigated and it is shown that algorithms appropriate for computing non-parametric mixing distributions perform better than an iterative convex minorant algorithm in terms of time to absolute convergence. A profile likelihood approach is proposed for joint estimation. The methods are illustrated on a data set relating to the onset of cardiac allograft vasculopathy in post-heart-transplantation patients. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics and Computing Springer Journals

Non-parametric maximum likelihood estimation of interval-censored failure time data subject to misclassification

Loading next page...
 
/lp/springer_journal/non-parametric-maximum-likelihood-estimation-of-interval-censored-muVQMCZSrw
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Statistics; Statistics and Computing/Statistics Programs; Artificial Intelligence (incl. Robotics); Statistical Theory and Methods; Probability and Statistics in Computer Science
ISSN
0960-3174
eISSN
1573-1375
D.O.I.
10.1007/s11222-016-9705-7
Publisher site
See Article on Publisher Site

Abstract

The paper considers non-parametric maximum likelihood estimation of the failure time distribution for interval-censored data subject to misclassification. Such data can arise from two types of observation scheme; either where observations continue until the first positive test result or where tests continue regardless of the test results. In the former case, the misclassification probabilities must be known, whereas in the latter case, joint estimation of the event-time distribution and misclassification probabilities is possible. The regions for which the maximum likelihood estimate can only have support are derived. Algorithms for computing the maximum likelihood estimate are investigated and it is shown that algorithms appropriate for computing non-parametric mixing distributions perform better than an iterative convex minorant algorithm in terms of time to absolute convergence. A profile likelihood approach is proposed for joint estimation. The methods are illustrated on a data set relating to the onset of cardiac allograft vasculopathy in post-heart-transplantation patients.

Journal

Statistics and ComputingSpringer Journals

Published: Sep 29, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off