Non-optimality of the Greedy Algorithm for Subspace Orderings in the Method of Alternating Projections

Non-optimality of the Greedy Algorithm for Subspace Orderings in the Method of Alternating... The method of alternating projections involves projecting an element of a Hilbert space cyclically onto a collection of closed subspaces. It is known that the resulting sequence always converges in norm and that one can obtain estimates for the rate of convergence in terms of quantities describing the geometric relationship between the subspaces in question, namely their pairwise Friedrichs numbers. We consider the question of how best to order a given collection of subspaces so as to obtain the best estimate on the rate of convergence. We prove, by relating the ordering problem to a variant of the famous Travelling Salesman Problem, that correctness of a natural form of the Greedy Algorithm would imply that $$\mathrm {P}=\mathrm {NP}$$ P = NP , before presenting a simple example which shows that, contrary to a claim made in the influential paper (Kayalar and Weinert in Math Control Signals Syst 1(1):43–59, 1988), the result of the Greedy Algorithm is not in general optimal. We go on to establish sharp estimates on the degree to which the result of the Greedy Algorithm can differ from the optimal result. Underlying all of these results is a construction which shows that for any matrix whose entries satisfy certain natural assumptions it is possible to construct a Hilbert space and a collection of closed subspaces such that the pairwise Friedrichs numbers between the subspaces are given precisely by the entries of that matrix. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Results in Mathematics Springer Journals

Non-optimality of the Greedy Algorithm for Subspace Orderings in the Method of Alternating Projections

Loading next page...
 
/lp/springer_journal/non-optimality-of-the-greedy-algorithm-for-subspace-orderings-in-the-neUaVd6Hay
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Mathematics; Mathematics, general
ISSN
1422-6383
eISSN
1420-9012
D.O.I.
10.1007/s00025-017-0721-5
Publisher site
See Article on Publisher Site

Abstract

The method of alternating projections involves projecting an element of a Hilbert space cyclically onto a collection of closed subspaces. It is known that the resulting sequence always converges in norm and that one can obtain estimates for the rate of convergence in terms of quantities describing the geometric relationship between the subspaces in question, namely their pairwise Friedrichs numbers. We consider the question of how best to order a given collection of subspaces so as to obtain the best estimate on the rate of convergence. We prove, by relating the ordering problem to a variant of the famous Travelling Salesman Problem, that correctness of a natural form of the Greedy Algorithm would imply that $$\mathrm {P}=\mathrm {NP}$$ P = NP , before presenting a simple example which shows that, contrary to a claim made in the influential paper (Kayalar and Weinert in Math Control Signals Syst 1(1):43–59, 1988), the result of the Greedy Algorithm is not in general optimal. We go on to establish sharp estimates on the degree to which the result of the Greedy Algorithm can differ from the optimal result. Underlying all of these results is a construction which shows that for any matrix whose entries satisfy certain natural assumptions it is possible to construct a Hilbert space and a collection of closed subspaces such that the pairwise Friedrichs numbers between the subspaces are given precisely by the entries of that matrix.

Journal

Results in MathematicsSpringer Journals

Published: Jul 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off