Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Non-Markovian entanglement dynamics of two qubits interacting with a common electromagnetic field

Non-Markovian entanglement dynamics of two qubits interacting with a common electromagnetic field We study the non-equilibrium dynamics of a pair of qubits made of two-level atoms separated in space with distance r and interacting with one common electromagnetic field but not directly with each other. Our calculation makes a weak coupling assumption but no Born or Markov approximation. We write the evolution equations of the reduced density matrix of the two-qubit system after integrating out the electromagnetic field modes. We study two classes of states in detail: Class A is a one parameter family of states which are the superposition of the highest energy and lowest energy states, and Class B states which are the linear combinations of the symmetric and the antisymmetric Bell states. Our results for an initial Bell state are similar to those obtained before for the same model derived under the Born–Markov approximation. However, in the Class A states the behavior is qualitatively different: under the non-Markovian evolution we do not see sudden death of quantum entanglement and subsequent revivals, except when the qubits are sufficiently far apart. We provide explanations for such differences of behavior both between these two classes of states and between the predictions from the Markov and non-Markovian dynamics. We also study the decoherence of this two-qubit system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Non-Markovian entanglement dynamics of two qubits interacting with a common electromagnetic field

Loading next page...
 
/lp/springer_journal/non-markovian-entanglement-dynamics-of-two-qubits-interacting-with-a-8KCER9HFHS

References (24)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
DOI
10.1007/s11128-009-0137-6
Publisher site
See Article on Publisher Site

Abstract

We study the non-equilibrium dynamics of a pair of qubits made of two-level atoms separated in space with distance r and interacting with one common electromagnetic field but not directly with each other. Our calculation makes a weak coupling assumption but no Born or Markov approximation. We write the evolution equations of the reduced density matrix of the two-qubit system after integrating out the electromagnetic field modes. We study two classes of states in detail: Class A is a one parameter family of states which are the superposition of the highest energy and lowest energy states, and Class B states which are the linear combinations of the symmetric and the antisymmetric Bell states. Our results for an initial Bell state are similar to those obtained before for the same model derived under the Born–Markov approximation. However, in the Class A states the behavior is qualitatively different: under the non-Markovian evolution we do not see sudden death of quantum entanglement and subsequent revivals, except when the qubits are sufficiently far apart. We provide explanations for such differences of behavior both between these two classes of states and between the predictions from the Markov and non-Markovian dynamics. We also study the decoherence of this two-qubit system.

Journal

Quantum Information ProcessingSpringer Journals

Published: Oct 7, 2009

There are no references for this article.