Non-magnetic compliant finger sensor for continuous fine motor movement detection

Non-magnetic compliant finger sensor for continuous fine motor movement detection A non-magnetic MEG compatible device has been developed that provides continuous force and velocity information. Combined with MEG, this device may find utility in characterizing brain regions associated with force and velocity relative to individual digits or movement pattern. 15 healthy right-handed participants were given visual cues to perform random finger movements on the prototype finger sensor for 21 s and then rest for 21 s (7 times). Respective finger flexion data were obtained, during 151-channel MEG brain scanning, by feeding the signal from finger sensor into four input Analog to Digital Converter (ADC) channels in the MEG hardware. The source activity was reconstructed in beta band using a Linearly Constrained Minimum Variance (LCMV) beamformer in the beta band. The ADC channels were used as regressors for a continuous time General Linear Model (GLM) and a Region of Interest (ROI) was identified to examine activity. MEG analysis showed bilateral activation in the primary motor cortex region. Because individual digits could be isolated in the ADC data, somatotopy of the fingers were observed consistent with the homunculus except pinky finger. The total span was calculated to be 5.5662 mm. The study confirms that the finger sensor is magnetically compatible with MEG measurements and may potentially provide a means to study complex sensorimotor functions. Improved isolation of individual digit information along with the use of machine learning algorithms can help retrieve more accurate results. Biomedical Engineering Letters Springer Journals

Non-magnetic compliant finger sensor for continuous fine motor movement detection

Loading next page...
The Korean Society of Medical and Biological Engineering
Copyright © 2017 by Korean Society of Medical and Biological Engineering and Springer
Engineering; Biomedical Engineering; Biological and Medical Physics, Biophysics; Biomedicine, general; Medical and Radiation Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial