Non-lytic extraction and characterisation of receptors for multiple strains of rotavirus

Non-lytic extraction and characterisation of receptors for multiple strains of rotavirus To characterise the cellular receptors for rotavirus, we used the detergent octyl-β-D-glucopyranoside (octyl-glucoside/OG) to extract the receptors for bovine, simian, porcine and human rotaviruses from MA104 and HT29 cells. An octyl-glucoside concentration of 0.2% dramatically reduced the susceptibility of treated cells to infection, while leaving them metabolically active, and as a result the depleted receptors were able to regenerate. Periodate treatment of the MA104 and HT29 octyl-glucoside extracts significantly decreased the ability of these extracts to neutralise rotavirus infectivity, revealing carbohydrate as component of the extracted receptors for Wa and NCDV. Treatment of MA104 cells with the metabolic inhibitors tunicamycin, deoxymannojirimycin and BenzylGalNAc suggested N-linked carbohydrate may be more important than O-linked in infection by some strains of rotavirus. Furthermore, by including cycloheximide during the regeneration of depleted receptors we found evidence that porcine rotavirus CRW8 may use a glycolipid-based receptor, while NCDV and Wa use a glycoprotein. The regenerating properties of the rotavirus receptors allowed repeated harvesting of cell surface molecules using octyl-glucoside on consecutive days, and these extracts were used to visualise virus binding in a virus overlay protein blot assay (VOPBA). Using VOPBAs, we observed both Wa and NCDV appear to recognise proteins of approximately the same molecular weight present on MA104 and HT29 cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Non-lytic extraction and characterisation of receptors for multiple strains of rotavirus

Loading next page...
 
/lp/springer_journal/non-lytic-extraction-and-characterisation-of-receptors-for-multiple-gxvL6mrx5H
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050170093
Publisher site
See Article on Publisher Site

Abstract

To characterise the cellular receptors for rotavirus, we used the detergent octyl-β-D-glucopyranoside (octyl-glucoside/OG) to extract the receptors for bovine, simian, porcine and human rotaviruses from MA104 and HT29 cells. An octyl-glucoside concentration of 0.2% dramatically reduced the susceptibility of treated cells to infection, while leaving them metabolically active, and as a result the depleted receptors were able to regenerate. Periodate treatment of the MA104 and HT29 octyl-glucoside extracts significantly decreased the ability of these extracts to neutralise rotavirus infectivity, revealing carbohydrate as component of the extracted receptors for Wa and NCDV. Treatment of MA104 cells with the metabolic inhibitors tunicamycin, deoxymannojirimycin and BenzylGalNAc suggested N-linked carbohydrate may be more important than O-linked in infection by some strains of rotavirus. Furthermore, by including cycloheximide during the regeneration of depleted receptors we found evidence that porcine rotavirus CRW8 may use a glycolipid-based receptor, while NCDV and Wa use a glycoprotein. The regenerating properties of the rotavirus receptors allowed repeated harvesting of cell surface molecules using octyl-glucoside on consecutive days, and these extracts were used to visualise virus binding in a virus overlay protein blot assay (VOPBA). Using VOPBAs, we observed both Wa and NCDV appear to recognise proteins of approximately the same molecular weight present on MA104 and HT29 cells.

Journal

Archives of VirologySpringer Journals

Published: Jul 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off