Non-invasive measurement of void fraction and liquid temperature in microchannel flow boiling

Non-invasive measurement of void fraction and liquid temperature in microchannel flow boiling Past thermometry research for two-phase microfluidic systems made much progress regarding wall temperature distributions, yet the direct measurement of fluid temperature has received little attention. This paper uses a non-invasive two-dye/two-color fluorescent technique to capture fluid temperature along with local liquid fraction in a two-phase microflow generated by injecting air into a heated microchannel. The fluorescent emission of Rhodamine 110 and Rhodamine B, measured with photodiodes, is used to obtain local liquid temperature (±3°C) and void fraction (±2% full-scale) over a temperature range from 45 to 100°C. Arrays of these sensors can significantly expand the set of measurable flow parameters to include bubble/slug frequency, size, velocity, and growth rates in addition to mapping the local liquid temperature and void fraction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Non-invasive measurement of void fraction and liquid temperature in microchannel flow boiling

Loading next page...
 
/lp/springer_journal/non-invasive-measurement-of-void-fraction-and-liquid-temperature-in-41mdtgL7LO
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-008-0604-3
Publisher site
See Article on Publisher Site

Abstract

Past thermometry research for two-phase microfluidic systems made much progress regarding wall temperature distributions, yet the direct measurement of fluid temperature has received little attention. This paper uses a non-invasive two-dye/two-color fluorescent technique to capture fluid temperature along with local liquid fraction in a two-phase microflow generated by injecting air into a heated microchannel. The fluorescent emission of Rhodamine 110 and Rhodamine B, measured with photodiodes, is used to obtain local liquid temperature (±3°C) and void fraction (±2% full-scale) over a temperature range from 45 to 100°C. Arrays of these sensors can significantly expand the set of measurable flow parameters to include bubble/slug frequency, size, velocity, and growth rates in addition to mapping the local liquid temperature and void fraction.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 27, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off